Daniel P. Gilboe

Learn More
Oxidants may play a central role in the pathogenesis of adult respiratory distress syndrome, and phospholipase activation is a potential mechanism of oxidant-induced injury of alveolar epithelial cells. Studies were performed in rat alveolar type II epithelial cells (RAEC) after 3 days in culture. As measured by 51Cr and lactate dehydrogenase release, H2O2(More)
Twenty-four-hour-fasted rats were given fructose (4 g/kg) by gavage. Fructose absorption and the portal vein, aorta, and hepatic vein plasma fructose, glucose, lactate, and insulin concentrations as well as liver fructose and fructose 1-P, glucose, glucose 6-P, UDPglucose, lactate, pyruvate, ATP, ADP, AMP, inorganic phosphate (Pi), cAMP, and Mg2+, and(More)
The glycogen synthase-mediated reaction is rate-limiting for glycogen synthesis in the liver. Glycogen synthase has been purified essentially to homogeneity and has been shown to be a dimer composed of identical subunits. It is regulated by a phosphorylation-dephosphorylation mechanism, catalyzed by kinases and a phosphatase. The subunits of synthase D, the(More)
Fructose and glucose, when administered as a single, large intravenous dose (500 mg/kg) produced opposite effects on key regulatory enzymes of glycogen metabolism in intact normal fed animals. Glucose rapidly stimulated glycogen synthase phosphatase activity and increased the proportion of glycogen synthase in the active (I) form as expected; fructose(More)
Twenty-four-hour-fasted rats were given glucose (4 g/kg) by gavage. Glucose absorption and portal and peripheral plasma glucose, lactate, and insulin concentrations, as well as liver glucose, UDPglucose, glucose-6-P, lactate, ATP, and inorganic phosphate (Pi), and % glycogen synthase I and % phosphorylase a were measured at 10, 20, 30, 40, 60, and 120 min(More)
Exposure to oxidants permeabilizes cell membranes and liberates unesterified fatty acids (UFA) in a variety of cell types, including endothelial cells. Products of phospholipase activity, particularly UFA and lysophosphatides, possess potent detergent-like properties, and we postulated that oxidant injury might be mediated by the accumulation of these toxic(More)