Learn More
Exposure to ethanol during development can lead to a constellation of congenital anomalies, resulting in prenatal and postnatal failure to thrive, central nervous system (CNS) deficits, and a number of patterning defects that lead to defects in the cardiovascular system, facial structures, and limbs. The cellular, biochemical, and molecular mechanisms by(More)
Methylmercury (MeHg) is a ubiquitous environmental pollutant and has been shown to affect learning in vertebrates following relatively low exposures. Zebrafish were used to model long-term learning deficits after developmental MeHg exposure. Selenomethionine (SeMet) co-exposure was used to evaluate its role in neuroprotection. Embryos were exposed from 2 to(More)
BACKGROUND Methylmercury (MeHg) is a known neurotoxic agent, but the mechanisms by which MeHg may act on reproductive pathways are relatively unknown. Several studies have indicated potential changes in hormone levels as well as declines in vertebrates with increasing dietary MeHg exposure. OBJECTIVES The purpose of this study was to identify alterations(More)
Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during(More)
Lead (Pb) caused multiple effects on reproductive behavior and overall reproductive success. Adult fathead minnows (Pimephales promelas) were acclimated at a 16L:8D photoperiod to stimulate reproductive development. Reproductively mature adults were separated as male-female pairs and maintained for 4 weeks in either 0.0 or 0.5 ppm Pb. High lead(More)
Lead (Pb(2+)) exposure continues to be an important concern for fish populations. Research is required to assess the long-term behavioral effects of low-level concentrations of Pb(2+) and the physiological mechanisms that control those behaviors. Newly fertilized zebrafish embryos (<2h post fertilization; hpf) were exposed to one of three concentrations of(More)
Developmental exposures to methylmercury (MeHg) have life-long behavioral effects. Many micronutrients, including selenium, are involved in cellular defenses against oxidative stress and may reduce the severity of MeHg-induced deficits. Zebrafish embryos (<4 h post fertilization, hpf) were exposed to combinations of 0.0-0.30 microM MeHg and/or(More)
There are several similarities between the behavioral and neurochemical effects of lead (Pb2+) and the cannabinoids. Both Pb2+ exposure and cannabinoid treatment decrease exploratory behavior. Pb2+-induced hyperactivity has been observed in rats and fish. By comparison, cannabinoids increase locomotor activity at higher doses in rats. Moreover, Pb2+(More)
The lead (Pb) chelator, meso-2,3-dimercaptosuccinic acid (DMSA) may be effective in reversing some of the adverse effects of Pb exposure. Pb-induced behavioral deficits observed in fish are due to disruptions in the integrative functioning of the medulla, cerebellum, and optic tectum. Pb exposure increased serotonin (5-HT) content in all three brain regions(More)
Total glucocorticoid binding sites were identified and quantitated in liver and brain of rainbow trout using an exchange method and [3H]dexamethasone as the ligand. Both tissues contained a predominantly cytosolic moiety that bound dexamethasone with high specificity. Binding was saturable, time dependent, and completely reversible. Scatchard analysis(More)