Daniel N. Hertle

Learn More
Activation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs) can lead to the release of Ca(2+) from intracellular stores and propagating Ca(2+) waves. Previous studies of these proteins in neurons have focused on their distribution in adult tissue, whereas, recent functional studies have examined neural tissue extracted(More)
We studied inositol-1,4,5-trisphosphate (IP(3)) receptor-dependent intracellular Ca(2+) waves in CA1 hippocampal and layer V medial prefrontal cortical pyramidal neurons using whole-cell patch-clamp recordings and Ca(2+) fluorescence imaging. We observed that Ca(2+) waves propagate in a saltatory manner through dendritic regions where increases in the(More)
Spreading depolarizations are waves of mass neuronal and glial depolarization that propagate across the injured human cortex. They can occur with depression of neuronal activity as spreading depressions or isoelectric spreading depolarizations on a background of absent or minimal electroencephalogram activity. Spreading depolarizations are characterized by(More)
BACKGROUND AND PURPOSE We studied the dynamics of extracellular brain tissue concentrations of glucose, lactate, pyruvate, and glutamate during the occurrence of spreading depolarizations (SDs) in patients with aneurysmal subarachnoid hemorrhage. METHODS In this prospective observational study, patients with aneurysmal subarachnoid hemorrhage received(More)
As the population ages, emergency physicians are confronted with a growing number of trauma patients receiving antithrombotic and antiplatelet medication prior to injury. In cases of traumatic brain injury, pre-injury treatment with anticoagulants has been associated with an increased risk of posttraumatic intracranial haemorrhage. Since high age itself is(More)
After traumatic brain injury, a cascade of metabolic changes promotes the development of secondary brain damage. In this study, we examined metabolic changes in rats in the acute stage after trauma. Furthermore, we investigated the effect of a very early decompression craniotomy on intracranial pressure (ICP) and on metabolic parameters. For this study, a(More)
Calcium (Ca(2+)) release from intracellular stores plays a crucial role in many cellular functions in the brain. These intracellular signals have been shown to be transmitted within and between cells. We report a non-uniform distribution of proteins essential for Ca(2+) signaling in acutely prepared brain slice preparations and organotypic slice cultures,(More)
Multimodal cerebral monitoring was utilized to examine the relationship between pathological changes in microdialysis parameters and the occurrence of spreading depolarizations (SD) in brain-injured patients. SD are a relatively newly discovered phenomenon in man found to be linked to secondary insults and infarct growth and they can be detected via(More)
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical(More)
Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary(More)