Learn More
OBJECTIVE To develop and characterize a clinically applicable, fast and efficient method for stem cell labeling with ferucarbotran and protamine for depiction with clinical MRI. METHODS The hydrodynamic diameter, zeta potential and relaxivities of ferucarbotran and varying concentrations of protamine were measured. Once the optimized ratio was found,(More)
PURPOSE To evaluate quantitative perfusion measurements of dynamic indocyanine green (ICG)-enhanced optical imaging for monitoring synovitis in the hands of patients with inflammatory arthritis compared with dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and clinical outcome. MATERIALS AND METHODS This study was approved by the ethics(More)
Human mesenchymal stem cells (hMSCs) were labeled with Ferucarbotran by simple incubation and cultured for up to 14 d. Iron content was determined by spectrometry and the intracellular localization of the contrast agent uptake was studied by electron and confocal microscopy. At various time points after labeling, ranging from 1 to 14 d, samples with viable(More)
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have demonstrated the ability to improve myocardial function following transplantation into an ischemic heart; however, the functional benefits are transient possibly due to poor cell retention. A diagnostic technique that could visualize transplanted hESC-CMs could help to optimize stem cell(More)
The purpose of this study was to label human monocytes with Gadofluorine M by simple incubation for subsequent cell depiction at 1.5 and 3 T. Gadofluorine M displays a high r(1) relaxivity and is spontaneously phagocytosed by macrophages. Human monocytes were incubated with Gadofluorine M-Cy at varying concentrations and incubation times and underwent MR(More)
OBJECTIVE To evaluate a combined indocyanine green-enhanced optical imaging/radiography system for the detection of arthritic joints in a rat model of antigen-induced arthritis. METHODS Arthritis of the knee and ankle joints was induced in 6 Harlan rats, using peptidoglycan-polysaccharide polymers. Three rats served as untreated controls. Optical imaging(More)
OBJECTIVE To compare magnetic resonance (MR) signal characteristics of contrast agent-labeled apoptotic and viable human mesenchymal stem cells (hMSCs) in matrix-associated stem cell implants. METHODS hMSCs were labeled with Food and Drug Administration-approved ferumoxides nanoparticles. One group (A) remained untreated whereas a second group (B)(More)
For in vivo applications of magnetically labeled stem cells, biological effects of the labeling procedure have to be precluded. This study evaluates the effect of different ferucarbotran cell labeling protocols on chondrogenic differentiation of human mesenchymal stem cells (hMSC) as well as their implications for MR imaging. hMSC were labeled with(More)
The purpose of this study was to (1) compare three different techniques for ferumoxide labeling of mesenchymal stem cells (MSCs), (2) evaluate if ferumoxide labeling allows in vivo tracking of matrix-associated stem cell implants (MASIs) in an animal model, and (3) compare the magnetic resonance imaging (MRI) characteristics of ferumoxide-labeled viable and(More)
OBJECTIVE Ultra-small superparamagnetic iron oxide nanoparticles (USPIO) are promising contrast agents for magnetic resonance imaging (MRI). USPIO mediated proton relaxation rate enhancement is strongly dependent on compartmentalization of the agent and can vary depending on their intracellular or extracellular location in the tumor microenvironment. We(More)