Daniel Livescu

Learn More
We have recently developed a general-purpose non linear system solver environment for complex physics computations on unstructured grids. This environment, named CartaBlanca, was described at last year's Java Grande Forum. CartaBlanca employs a finite-volume method, [1]. The solution of the non linear algebraic systems, arising from representing the(More)
Direct numerical simulations ͑DNS͒ are conducted to study the turbulence-chemical reaction interactions in homogeneous decaying compressible fluid flows. The reaction is of a single-step irreversible Arrhenius type. The results indicate that the heat of reaction has a noticeable influence on the solenoidal and the dilatational turbulent motions. The effect(More)
  • D Livescu
  • 2013
A tentative review is presented of various approaches for numerical simulations of two-fluid gaseous mixtures at high density ratios, as they have been applied to the Rayleigh-Taylor instability (RTI). Systems exhibiting such RTI behaviour extend from atomistic sizes to scales where the continuum approximation becomes valid. Each level of description can(More)
The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from(More)
This paper compares the effectiveness of various multi-resolution geometric representation methods, such as B-spline, Daubechies, Coiflet and Dual-tree wavelets, curvelets and surfacelets, to capture the structure of fully developed turbulence using a truncated set of coefficients. The turbulence dataset is obtained from a Direct Numerical Simulation of(More)
The growth of the two-dimensional single-mode Rayleigh-Taylor instability (RTI) at low Atwood number (A=0.04) is investigated using Direct Numerical Simulations. The main result of the paper is that, at long times and sufficiently high Reynolds numbers, the bubble acceleration becomes stationary, indicating mean quadratic growth. This is contrary to the(More)
We demonstrate, in the context of implicit-filtering large eddy simulations (LESs) of geostrophic turbulence, that while the attractor of a well-resolved statistically stationary turbulent flow can be reached in a coarsely resolved LES that is forced by the subgrid scale (SGS) terms diagnosed from the well-resolved computation, the attractor is generically(More)