Daniel L. Yokell

Learn More
OBJECTIVE Detection of focal brain tau deposition during life could greatly facilitate accurate diagnosis of Alzheimer disease (AD), staging and monitoring of disease progression, and development of disease-modifying therapies. METHODS We acquired tau positron emission tomography (PET) using (18)F T807 (AV1451), and amyloid-β PET using (11)C Pittsburgh(More)
Somatostatin receptors (SSTR) are highly expressed in well-differentiated neuroendocrine tumors (NET). Octreotide, an SSTR agonist, has been used to suppress the production of vasoactive hormones and relieve symptoms of hormone hypersecretion with functional NETs. In a clinical trial, an empiric dose of octreotide treatment prolonged time to tumor(More)
Fluorine-18 labeled 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([(18) F]T807) is a potent and selective agent for imaging paired helical filaments of tau and is among the most promising PET radiopharmaceuticals for this target in early clinical trials. The present study reports a simplified one-step method for the synthesis of [(18) F]T807 that is(More)
18F-T807 is a PET radiotracer developed for imaging tau protein aggregates, which are implicated in neurologic disorders including Alzheimer disease and traumatic brain injury (TBI). The current study characterizes 18F-T807 pharmacokinetics in human subjects using dynamic PET imaging and metabolite-corrected arterial input functions. Methods: Nine subjects(More)
UNLABELLED Translation of new methodologies for labeling nonactivated aromatic molecules with (18)F remains a challenge. Here, we report a one-step, regioselective, metal-free (18)F-labeling method that uses a hypervalent iodonium(III) ylide precursor, to prepare the radiopharmaceutical (18)F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile ((18)F-FPEB). (More)
Despite extensive preclinical imaging with radiotracers developed by continuous-flow microfluidics, a positron emission tomographic (PET) radiopharmaceutical has not been reported for human imaging studies by this technology. The goal of this study was to validate the synthesis of the tau radiopharmaceutical 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole(More)
We report an automated synthesis of [(18)F]-FMISO utilizing a prototype microfluidic radiochemistry module. The instrument allows for production of the tracer with 58%±2% (11 runs) decay corrected yield. Total time of production, including synthesis and purification averages 60 min. Use of the microfluidic platform results in a specific activity of 138.6(More)
The synthesis of fluorine-18 labeled 3-fluoro-5-[(pyridin-3-yl)ethynyl] benzonitrile ([18F]FPEB) for imaging metabotropic glutamate receptor subtype type 5 (mGluR5) was achieved with a commercial continuous-flow microfluidics device. This work represents the first positron emission tomography (PET) radiopharmaceutical that is suitable for human use with(More)
Fluorine-18-labelled 6-(fluoro)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18 F]MK-6240) is a novel potent and selective positron emission tomography (PET) radiopharmaceutical for detecting human neurofibrillary tangles, which are made up of aggregated tau protein. Herein, we report the fully automated 2-step radiosynthesis of [18 F]MK-6240(More)