Daniel Lüftenegger

Learn More
The prototype foamy virus (PFV) glycoprotein, which is essential for PFV particle release, displays a highly unusual biosynthesis, resulting in posttranslational cleavage of the precursor protein into three particle-associated subunits, i.e., leader peptide (LP), surface (SU), and transmembrane (TM). Glycosidase digestion of metabolically labeled PFV(More)
BACKGROUND The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad(More)
Glycoproteins of several viruses have the capacity to induce release of noninfectious, capsidless particulate structures containing only the viral glycoprotein. Such structures are often called subviral particles (SVP). Foamy viruses (FVs), a special type of retroviruses with a replication strategy combining features of both orthoretroviruses and(More)
Analogous to cellular glycoproteins, viral envelope proteins contain N-terminal signal sequences responsible for targeting them to the secretory pathway. The prototype foamy virus (PFV) envelope (Env) shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N and C terminus located in the cytoplasm.(More)
Foamy virus (FV) particle egress is unique among retroviruses because of its essential requirement for Gag and Env coexpression for budding and particle release. The FV glycoprotein undergoes a highly unusual biosynthesis resulting in the generation of three particle-associated, mature subunits, leader peptide (LP), surface (SU), and transmembrane (TM),(More)
Dendritic cells (DC) are the most potent antigen-presenting cells (APC) known today and are designated as nature's adjuvant since they are the only antigen-presenting cell type capable of inducing naïve T cell responses in vivo. In order to become potent T cell stimulators DC have to mature. This mature DC phenotype is characterized amongst other(More)
The foamy virus (FV) glycoprotein precursor gp130(Env) undergoes a highly unusual biosynthesis, resulting in the generation of three particle-associated, mature subunits, leader peptide (LP), surface (SU), and transmembrane (TM). Little structural and functional information on the extracellular domains of FV Env is available. In this study, we characterized(More)
  • 1