Learn More
— Robust dynamic optimization problems involving adaptive decisions are computationally intractable in general. Tractable upper bounding approximations can be obtained by requiring the adaptive decisions to be representable as linear decision rules (LDRs). In this paper we investigate families of tractable lower bounding approximations, which serve to(More)
A sharp upper bound on the probability of a random vector falling outside a polytope, based solely on the first and second moments of its distribution, can be computed efficiently using semidefinite programming. However, this Chebyshev-type bound tends to be overly conservative since it is determined by a discrete worst-case distribution. In this paper we(More)
Distributionally robust optimization is a paradigm for decision-making under uncertainty where the uncertain problem data is governed by a probability distribution that is itself subject to uncertainty. The distribution is then assumed to belong to an ambiguity set comprising all distributions that are compatible with the decision maker's prior information.(More)
Graphs are frequently used to describe the geometry and also the physicochemical composition of protein active sites. Here, the concept of graph alignment as a novel method for the structural analysis of protein binding pockets is presented. Using inexact graph-matching techniques, one is able to identify both conserved areas and regions of difference among(More)
Robust portfolio optimization aims to maximize the worst-case portfolio return given that the asset returns are allowed to vary within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market(More)
We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform(More)