#### Filter Results:

#### Publication Year

1994

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

Distributionally robust optimization is a paradigm for decision-making under uncertainty where the uncertain problem data is governed by a probability distribution that is itself subject to uncertainty. The distribution is then assumed to belong to an ambiguity set comprising all distributions that are compatible with the decision maker's prior information.… (More)

— Robust dynamic optimization problems involving adaptive decisions are computationally intractable in general. Tractable upper bounding approximations can be obtained by requiring the adaptive decisions to be representable as linear decision rules (LDRs). In this paper we investigate families of tractable lower bounding approximations, which serve to… (More)

A sharp upper bound on the probability of a random vector falling outside a polytope, based solely on the first and second moments of its distribution, can be computed efficiently using semidefinite programming. However, this Chebyshev-type bound tends to be overly conservative since it is determined by a discrete worst-case distribution. In this paper we… (More)

Linear stochastic programming provides a flexible toolbox for analyzing real-life decision situations, but it can become computationally cumbersome when recourse decisions are involved. The latter are usually modeled as decision rules, i.e., functions of the uncertain problem data. It has recently been argued that stochastic programs can quite generally be… (More)

Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic environments. However, the solutions of MDPs are of limited practical use due to their sensitivity to distributional model parameters, which are typically unknown and have to be estimated by the decision maker. To counter the detrimental effects of estimation… (More)

Portfolio optimization problems involving Value-at-Risk (VaR) are often computationally intractable and require complete information about the return distribution of the portfolio constituents, which is rarely available in practice. These difficulties are compounded when the portfolio contains derivatives. We develop two tractable conservative… (More)

Robust portfolio optimization aims to maximize the worst-case portfolio return given that the asset returns are allowed to vary within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market… (More)

MOTIVATION
Many drug discovery projects fail because the underlying target is finally found to be undruggable. Progress in structure elucidation of proteins now opens up a route to automatic structure-based target assessment. DoGSiteScorer is a newly developed automatic tool combining pocket prediction, characterization and druggability estimation and is… (More)

Continuous linear programs have attracted considerable interest due to their potential for modelling manufacturing, scheduling and routing problems. While efficient simplex-type algorithms have been developed for separated continuous linear programs, crude time discretization remains the method of choice for solving general (non-separated) problem… (More)