Learn More
UNLABELLED We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01(More)
Spreadsheet language programs, which include commercial spreadsheets, are among the most common form of software in use today. Unlike more "traditional" forms of software however, spreadsheet language programs are created and maintained by end-users with little or no programming experience. As a result, a high percentage of these programs contain errors.(More)
(2015) The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Front. Neural Circuits 9:44. We have established a multi-constraint, data-driven process to digitally reconstruct, and simulate prototypical neocortical microcircuitry, using sparse experimental data. We applied this process to reconstruct the microcircuitry(More)
The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young(More)
Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with(More)
Recorded potentials in the extracellular space (ECS) of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor(More)
Ca(2+)-dependent transmitter release occurs in a fast and in a slow phase, but the differential roles of Ca(2+) buffers and Ca(2+) sensors in shaping release kinetics are still controversial. Replacing extracellular Ca(2+) by Sr(2+) causes decreased fast release but enhanced slow release at many synapses. Here, we established presynaptic Sr(2+) uncaging and(More)
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mitsuo Kawato F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of(More)
Several pathological conditions, such as hypoxia, anoxia, ischemia and spreading depression are associated with ion concentration changes in the extracellular space (ECS) [1]. Also during non-pathological conditions, endured periods of intense neural signaling may cause local ion concentration changes in the millimolar range. Changes in ion concentrations(More)
This project comprises an attempt to leverage the built-in numerical tools and rapid-prototyping facilities provided by Matlab to implement the system described in Paul Debevec's seminal paper 'Recovering High Dynamic Range Radiance Maps from Photographs.' This paper presents a method for constructing high-dynamic range radiance maps by combining a series(More)