Learn More
Phosphoinositide 3 kinase enhancer (PIKE) is a recently identified nuclear GTPase that activates nuclear phosphoinositide 3-kinase (PI3 kinase). We have identified, cloned and characterized a new form of PIKE, designated PIKE-L, which, unlike the nuclear PIKE-S, localizes to both the cytoplasm and the nucleus. We demonstrate physiologic binding of PIKE-L to(More)
Distinct subtypes of glutamate receptors often are colocalized at individual excitatory synapses in the mammalian brain yet appear to subserve distinct functions. To address whether neuronal activity may differentially regulate the surface expression at synapses of two specific subtypes of ionotropic glutamate receptors we epitope-tagged an AMPA(More)
Neutrophils exposed to chemoattractants polarize and accumulate polymerized actin at the leading edge. In neutrophil-like HL-60 cells, this asymmetry depends on a positive feedback loop in which accumulation of a membrane lipid, phosphatidylinositol (PI) 3,4,5-trisphosphate (PI[3,4,5]P3), leads to activation of Rac and/or Cdc42, and vice versa. We now(More)
The attaching and effacing (A/E) pathogen enteropathogenic Escherichia coli (EPEC) forms characteristic actin-filled membranous protrusions upon infection of host cells termed pedestals. Here we examine the role of the RNA binding protein CsrA in the expression of virulence genes and proteins that are necessary for pedestal formation. The csrA mutant was(More)
The strain designated Chlamydia trachomatis serovar L2 that was used for experiments in this paper is Chlamydia muridarum, a species closely related to C. trachomatis (and formerly termed the Mouse Pneumonitis strain of C. trachomatis). This conclusion was verified by deep sequencing and by PCR using species-specific primers. All data presented in the(More)
The inactivation of calcium channels in mammalian pituitary tumor cells (GH3) was studied with patch electrodes under voltage clamp in cell-free membrane patches and in dialyzed cells. The calcium current elicited by depolarization from a holding potential of -40 mV passed predominantly through one class of channels previously shown to be modulated by(More)
Enteropathogenic Escherichia coli (EPEC) are deadly contaminants in water and food and induce protrusion of actin-rich membrane pedestals beneath themselves upon attachment to intestinal epithelia. EPEC then causes intestinal inflammation, diarrhea, and, among children, death. Here, we show that EPEC uses multiple tyrosine kinases for formation of(More)
Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water-borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and(More)
cAMP-dependent protein kinase (PKA) and phospholipid-dependent protein kinase (PKC) play a role in nerve growth factor (NGF)-mediated differentiation. In PC12 cells, NGF causes neurite outgrowth and increases the number of voltage-gated Na+ channels. Neurite outgrowth involves in part activation of PKC. How NGF regulates Na+ channel number is unknown. Using(More)
In recent years there has been an increase in interest in issues related to the enhancement of the performance of the masters athlete. Many of the changes in health status that have been thought to be the normal result of aging have been found to be actually the result of a long-standing sedentary lifestyle. Thus, masters athletes may be able to increase(More)