Learn More
Astrocyte endfeet surrounding blood vessels are active domains involved in water and potassium ion transport crucial to the maintenance of water and potassium ion homeostasis in brain. A growing body of evidence points to a role for dystroglycan and its interaction with perivascular laminin in the targeting of the dystrophin complex and the water-permeable(More)
The proper targeting of ion channels to specialized domains is crucial for cell function. Kir4.1, the inwardly rectifying potassium channel, and aquaporin-4 (AQP4), the type 4 water-permeable channel, are localized at the basolateral domain of polarized epithelial cells; however, the mechanisms involved in their localization have yet to be determined. In(More)
The water-permeable channel aquaporin-4 (AQP4) is highly expressed in perivascular astrocytes of the mammalian brain and represents the major conduit for water across the blood-brain barrier. Within these cells, AQP4 is found in great quantities at perivascular endfoot sites but is detected in lesser amounts at the membrane domains within the brain(More)
Cell-surface proteins mediate a wide array of functions. In many cases, their activity is regulated by endocytic processes that modulate their levels at the plasma membrane. Here, we present detailed protocols for 2 methods that facilitate the study of such processes, both of which are based on the principle of the biotinylation of cell-surface proteins.(More)
Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform(More)
  • 1