Learn More
A long-standing theory posits that central chemoreception, the CNS mechanism for CO(2) detection and regulation of breathing, involves neurons located at the ventral surface of the medulla oblongata (VMS). Using in vivo and in vitro electrophysiological recordings, we identify VMS neurons within the rat retrotrapezoid nucleus (RTN) that have characteristics(More)
Central respiratory chemoreception is the mechanism by which the CNS maintains physiologically appropriate pH and PCO2 via control of breathing. A prominent hypothesis holds that neural substrates for this process are distributed widely in the respiratory network, especially because many neurons that make up this network are chemosensitive in vitro. We and(More)
The rat retrotrapezoid nucleus (RTN) contains neurons described as central chemoreceptors in the adult and respiratory rhythm-generating pacemakers in neonates [parafacial respiratory group (pfRG)]. Here we test the hypothesis that both RTN and pfRG neurons are intrinsically chemosensitive and tonically firing neurons whose respiratory rhythmicity is caused(More)
We previously reported (J Appl Physiol 89: 807-822, 2000) that < or =10 min of hyperbaric oxygen (HBO(2); < or = 2,468 Torr) stimulates solitary complex neurons. To better define the hyperoxic stimulus, we measured PO(2) in the solitary complex of 300-microm-thick rat medullary slices, using polarographic carbon fiber microelectrodes, during perfusion with(More)
To understand the role of mitochondrial uncoupling protein (UCP) in regulating insulin signaling and glucose homeostasis, we created transgenicDrosophila lines with targeted UCP expression in insulin producing cells (IPCs). Increased UCP activity in IPCs results in decreased steady state Ca(2+) levels in IPCs as well as decreased PI3K activity and increased(More)
Central congenital hypoventilation syndrome is caused by mutations of the gene that encodes the transcription factor Phox2b. The syndrome is characterized by a severe form of sleep apnea attributed to greatly compromised central and peripheral chemoreflexes. In this study, we analyze whether Phox2b expression in the brainstem respiratory network is(More)
Central chemoreception is the mechanism by which arterial blood P(CO2) is detected by the CNS to regulate breathing. Two main theories have been proposed to account for the phenomenon. The distributed chemosensitivity theory argues that pH sensitivity is a widespread attribute of brainstem neurones and that central chemoreception results from the cumulative(More)
Serotonin activates respiration and enhances the stimulatory effect of CO2 on breathing. The present study tests whether the mechanism involves the retrotrapezoid nucleus (RTN), a group of medullary glutamatergic neurons activated by extracellular brain pH and presumed to regulate breathing. We show that the RTN is innervated by both medullary and pontine(More)
Central chemoreception is the mechanism by which CO(2)/pH-sensitive neurons (i.e. chemoreceptors) regulate breathing, presumably in response to changes in tissue pH. A region of the brainstem called the retrotrapezoid nucleus (RTN) is thought to be an important site of chemoreception; select neurons (i.e. chemoreceptors) in this region sense changes in(More)
The Journal of Applied Physiology (ISSN-8750-7587) is published online twice monthly and bound once in print monthly (two volumes per year) by the American Physiological Society, 9650 Rockville Pike, Bethesda, MD 20814-3991 and online at www.jap.org (ISSN 1522-1601). Subscription Prices (postpaid). For institutional print and online pricing, please see The(More)