Learn More
Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in(More)
The need to enhance the sustainability of intensive agricultural systems is widely recognized One promising approach is to encourage beneficial services provided by soil microorganisms to decrease the inputs of fertilizers and pesticides. However, limited success of this approach in field applications raises questions as to how this might be best(More)
MOTIVATION In profiling the composition and structure of complex microbial communities via high throughput amplicon sequencing, a very low proportion of community members are typically sampled. As a result of this incomplete sampling, estimates of dissimilarity between communities are often inflated, an issue we term pseudo β-diversity. RESULTS We present(More)
A variety of soil factors are known to increase nutrient availability and plant productivity. The most influential might be the organisms comprising the soil microbial community of the rhizosphere, which is the soil surrounding the roots of plants where complex interactions occur between the roots, soil, and microorganisms. Root exudates act as substrates(More)
In this study we used stool profiling to identify intestinal bacteria and metabolites that are differentially represented in humans with colorectal cancer (CRC) compared to healthy controls to identify how microbial functions may influence CRC development. Stool samples were collected from healthy adults (n = 10) and colorectal cancer patients (n = 11)(More)
BACKGROUND Ecological, evolutionary and physiological studies have thus far provided an incomplete picture of why some plants become invasive; therefore we used genomic resources to complement and advance this field. In order to gain insight into the invasive mechanism of Centaurea stoebe we compared plants of three geo-cytotypes, native Eurasian diploids,(More)
The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root(More)
The roots of plants secrete compounds as a way to exchange information with organisms living in the soil. Here, we report the involvement of seven root-expressed ATP-binding cassette (ABC) transporters corresponding to both full and half-size molecules (Atabcg36, Atabcg37, Atabcc5, Atabcf1, Atabcf3, Atnap5, and Atath10) in root exudation processes using(More)
Ethanol in sapwood was analyzed along vertical transects, through small spot cankers and larger basal cankers, of Phytophthora ramorum-infected stems of Quercus agrifolia at three sites in California. Trees with large basal cankers, known to attract scolytid beetles, had a 4.3 times higher ethanol level than trees with spot cankers that attract fewer(More)
Phytophthora ramorum populations are clonal and consist of three clonal lineages: EU1 is the only lineage found in Europe with a few isolated nursery infections in the USA; NA1 is associated with natural infestations in California and Oregon as well as some nursery infections in North America, and NA2 has a limited distribution and has only been isolated(More)