Learn More
Pyramidal neurons receive tens of thousands of synaptic inputs on their dendrites. The dendrites dynamically alter the strengths of these synapses and coordinate them to produce an output in ways that are not well understood. Surprisingly, there turns out to be a very high density of transient A-type potassium ion channels in dendrites of hippocampal CA1(More)
The role of back-propagating dendritic action potentials in the induction of long-term potentiation (LTP) was investigated in CA1 neurons by means of dendritic patch recordings and simultaneous calcium imaging. Pairing of subthreshold excitatory postsynaptic potentials (EPSPs) with back-propagating action potentials resulted in an amplification of dendritic(More)
1. We have used dendrite-attached patch-clamp techniques to record single Na+ and Ca2+ channel activity from the apical dendrites (up to 350 microns away from soma) of CA1 pyramidal neurons in rat hippocampal slices (ages: 2-8 weeks). 2. Na+ channels were found in every patch examined (range: 2 to > 20 channels per patch). Channel openings, which had a(More)
Functional magnetic resonance imaging (fMRI) is based on the coupling between neural activity and changes in the concentration of the endogenous paramagnetic contrast agent deoxygenated hemoglobin. Changes in the blood oxygen level-dependent (BOLD) signal result from a complex interplay of blood volume, flow, and oxygen consumption. Optical imaging(More)
1. Perforated patch-clamp recordings were made from the three major classes of hippocampal neurons in conventional in vitro slices prepared from adult guinea pigs. This technique provided experimental estimates of passive membrane properties (input resistance, RN, and membrane time constant, tau m) determined in the absence of the leak conductance(More)
Activation of dendritic voltage-gated ion channels by local synaptic input was tested by simultaneous dendrite-attached patch-clamp recordings and whole-cell somatic voltage recordings made from CA1 pyramidal neurons in hippocampal slices. Schaffer collateral stimulation elicited subthreshold excitatory postsynaptic potentials (EPSPs) that opened(More)
We have reported recently a high density of transient A-type K+ channels located in the distal dendrites of CA1 hippocampal pyramidal neurons and shown that these channels shape EPSPs, limit the back-propagation of action potentials, and prevent dendritic action potential initiation (). Because of the importance of these channels in dendritic signal(More)
The dendrites of pyramidal neurons have markedly different electrical properties from those of the soma, owing to the non-uniform distribution of voltage-gated ion channels in dendrites. It is thus possible that drugs acting on ion channels might preferentially alter dendritic, but not somatic, excitability. Using dendritic and somatic whole-cell and(More)
Pattern completion, the ability to retrieve complete memories on the basis of incomplete sets of cues, is a crucial function of biological memory systems. The extensive recurrent connectivity of the CA3 area of hippocampus has led to suggestions that it might provide this function. We have tested this hypothesis by generating and analyzing a genetically(More)
The dendrites of many types of neurons contain voltage-dependent Na+ and Ca2+ conductances that generate action potentials (see ref. 1 for review). The function of these spikes is not well understood, but the Ca2+ entry stimulated by spikes probably affects Ca(2+)-dependent processes in dendrites. These include synaptic plasticity, cytotoxicity and(More)