Daniel Jiwoong Im

Learn More
Gatys et al. (2015) showed that optimizing pixels to match features in a convolutional network with respect reference image features is a way to render images of high visual quality. We show that unrolling this gradient-based optimization yields a recurrent computation that creates images by incrementally adding onto a visual “canvas”. We propose a(More)
Denoising autoencoders (DAE) are trained to reconstruct their clean inputs with noise injected at the input level, while variational autoencoders (VAE) are trained with noise injected in their stochastic hidden layer, with a regularizer that encourages this noise injection. In this paper, we show that injecting noise both in input and in the stochastic(More)
Regularization is essential when training large neural networks. As deep neural networks can be mathematically interpreted as universal function approximators, they are effective at memorizing sampling noise in the training data. This results in poor generalization to unseen data. Therefore, it is no surprise that a new regularization technique, Dropout,(More)
We discuss necessary and sufficient conditions for an auto-encoder to define a conservative vector field, in which case it is associated with an energy function akin to the unnormalized log-probability of the data. We show that the conditions for conservativeness are more general than for encoder and decoder weights to be the same (“tied weights”), and that(More)
Previous neural machine translation models used some heuristic search algorithms (e.g., beam search) in order to avoid solving the maximum a posteriori problem over translation sentences at test time. In this paper, we propose the Gumbel-Greedy Decoding which trains a generative network to predict translation under a trained model. We solve such a problem(More)
Generative Adversarial Networks (GAN) have become one of the most studied frameworks for unsupervised learning due to their intuitive formulation. They have also been shown to be capable of generating convincing examples in limited domains, such as low-resolution images. However, they still prove difficult to train in practice and tend to ignore modes of(More)
In problems where labeled data is scarce, semisupervised learning (SSL) techniques are an attractive framework that can exploit both labeled and unlabeled data. These approaches typically rely on a smoothness assumption such that examples that are similar in input space should also be similar in label space. In many domains, such as remotely sensed(More)
Energy-based models are popular in machine learning due to the elegance of their formulation and their relationship to statistical physics. Among these, the Restricted Boltzmann Machine (RBM), and its staple training algorithm contrastive divergence (CD), have been the prototype for some recent advancements in the unsupervised training of deep neural(More)