Daniel Jameson

Learn More
Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the(More)
Organellar Genome Retrieval (OGRe) is a relational database of complete mitochondrial genome sequences for over 250 Metazoan species. OGRe provides a resource for the comparative analysis of mitochondrial genomes at several levels. At the sequence level, OGRe allows the retrieval of any selected set of mitochondrial genes from any selected set of species.(More)
Evolution of mitochondrial genes is far from clock-like. The substitution rate varies considerably between species, and there are many species that have a significantly increased rate with respect to their close relatives. There is also considerable variation among species in the rate of gene order rearrangement. Using a set of 55 complete arthropod(More)
To date, several genome-scale network reconstructions have been used to describe the metabolism of the yeast Saccharomyces cerevisiae, each differing in scope and content. The recent community-driven reconstruction, while rigorously evidenced and well annotated, under-represented metabolite transport, lipid metabolism and other pathways, and was not(More)
Animal mitochondrial genomes usually have two transfer RNAs for leucine: one, with anticodon UAG, translates the four-codon family CUN, while the other, with anticodon UAA, translates the two-codon family UUR. These two genes must differ at the third anticodon position, but in some species the genes differ at many additional sites, indicating that these(More)
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a "cycle of knowledge" strategy, identifying the steps with most control over flux. Kinetic parameters of the(More)
The behaviour of biological systems can be deduced from their mathematical models. However, multiple sources of data in diverse forms are required in the construction of a model in order to define its components and their biochemical reactions, and corresponding parameters. Automating the assembly and use of systems biology models is dependent upon data(More)
The systematic capture of appropriately annotated experimental data is a prerequisite for most bioinformatics analyses. Data capture is required not only for submission of data to public repositories, but also to underpin integrated analysis, archiving, and sharing – both within laboratories and in collaborative projects. The widespread requirement to(More)