Learn More
The dorsolateral reticular formation of the caudal medulla, or the lateral tegmental field (LTF), has been classified as the brain's "vomiting center", as well as an important region in regulating sympathetic outflow. We examined the responses of LTF neurons in cats to rotations of the body that activate vestibular receptors, as well as to stimulation of(More)
The vestibular nuclei integrate information from vestibular and proprioceptive afferents, which presumably facilitates the maintenance of stable balance and posture. However, little is currently known about the processing of sensory signals from the limbs by vestibular nucleus neurons. This study tested the hypothesis that limb movement is encoded by(More)
Vomiting and nausea can be elicited by a variety of stimuli, although there is considerable evidence that the same brainstem areas mediate these responses despite the triggering mechanism. A variety of experimental approaches showed that nucleus tractus solitarius, the dorsolateral reticular formation of the caudal medulla (lateral tegmental field), and the(More)
Integration of vestibular and proprioceptive afferent information within the central nervous system is a critical component of postural regulation. We recently demonstrated that labyrinthine and hindlimb signals converge onto vestibular nucleus neurons, such that hindlimb movement modulates the activity of these cells. However, it is unclear whether similar(More)
1. Caffeine (10 mM) induced a transient contracture in saponin-treated cardiac trabeculae as a result of Ca2+ release from the sarcoplasmic reticulum (SR). Regular cycles of uptake and release were repeated to stabilize responses. The SR accumulated Ca2+ during the period prior to the addition of caffeine and this was reflected in the size of the caffeine(More)
Neurons located in the caudal aspect of the vestibular nucleus complex have been shown to receive visceral inputs and project to brainstem regions that participate in generating emesis, such as nucleus tractus solitarius and the “vomiting region” in the lateral tegmental field (LTF). Consequently, it has been hypothesized that neurons in the caudal(More)
Among the mechanisms postulated to contribute to myocardial "stunning" is a depression of contractility by oxygen-derived free radicals. It has been suggested that these radicals might depress the calcium sensitivity of the contractile proteins. We have exposed the myofilaments (in chemically "skinned" rat cardiac muscle) to the superoxide anion and(More)
The dorsolateral reticular formation of the caudal medulla, the lateral tegmental field (LTF), participates in generating vomiting. LTF neurons exhibited complex responses to vestibular stimulation in decerebrate cats, indicating that they received converging inputs from a variety of labyrinthine receptors. Such a convergence pattern of vestibular inputs is(More)
Previous studies demonstrated that ingestion of the emetic compound copper sulfate (CuSO4) alters the responses to vestibular stimulation of a large fraction of neurons in brainstem regions that mediate nausea and vomiting, thereby affecting motion sickness susceptibility. Other studies suggested that the processing of vestibular inputs by cerebellar(More)