Learn More
Osteogenesis imperfecta (OI) is a genetically and clinically heterogeneous disease characterized by extreme bone fragility. Although fracture numbers tend to decrease post-puberty, OI patients can exhibit significant variation in clinical outcome, even among related individuals harboring the same mutation. OI most frequently results from mutations in type I(More)
Osteogenesis imperfecta (OI) is a heritable disorder of connective tissue associated with fractures, osteopenia, and short stature. OI results from mutations affecting the pro alpha 1 or pro alpha 2 gene of type I collagen. We describe a strain of mice with a nonlethal recessively inherited mutation (oim) that results in phenotypic and biochemical features(More)
Because the amount and structure of type I collagen are thought to affect the mechanics of ventricular myocardium, we investigated myocardial collagen structure and passive mechanical function in the osteogenesis imperfecta murine (oim) model of pro-alpha2(I) collagen deficiency, previously shown to have less collagen and impaired biomechanics in tendon and(More)
Type I collagen is the most prevalent member of the fibril forming family of collagens in higher vertebrates and its heterotrimeric form is comprised of two alpha 1(I) chains and one alpha2(I) polypeptide chain. The functional importance of having two distinct chain types in type I collagen is largely undefined. The existence of a mouse model with a Cola-2(More)
Mice with the naturally occurring oim mutation allows investigation of bone pathobiology in the setting of one mutation: a G deletion in the murine Cola-2 gene (exon 52) encoding the proalpha2(I) C-propeptide. As a result, normal sized mRNA is transcribed, but no secreted protein has been identified in oim/oim fibroblasts or osteoblasts. Here we report(More)
Types I, II, and III collagens are believed to have evolved from the same homotrimer ancestor and they have substantial sequence homology, but type I molecules are alpha1(I)(2)alpha2(I) heterotrimers, unlike homotrimeric types II and III. It is believed that the alpha2(I) chain first appeared in lower vertebrates and that it plays a particularly important(More)
UNLABELLED Using autosome-wide linkage analysis in 964 Amish, strong evidence was found for the presence of genes affecting hip and spine BMD in men on chromosomes 7q31 and 21q22 (LOD = 4.15 and 3.36, respectively). INTRODUCTION BMD is highly heritable, with genetic factors accounting for 60-88% of variation. The goal of this study was to localize genes(More)
We investigated regions of different helical stability within human type I collagen and discussed their role in intermolecular interactions and osteogenesis imperfecta (OI). By differential scanning calorimetry and circular dichroism, we measured and mapped changes in the collagen melting temperature (DeltaTm) for 41 different Gly substitutions from 47 OI(More)
CONTEXT We reported previously that Old Order Amish (OOA) women have fewer hip fractures and higher bone mineral density (BMD) than non-Amish Caucasian women. OBJECTIVE The objective of this study was to determine whether the high parity characteristic of OOA women contributes to their relative bone health. Previous data on the long-term effects of parity(More)
Genetic factors influencing acquisition of peak bone mass account for a substantial proportion of the variation in bone mineral density (BMD), although the extent to which genes also contribute to variation in bone loss is debatable. Few prospective studies of related individuals have been carried out to address this issue. To gain insights into the nature(More)