Daniel J. Lippincott

Learn More
DNA damage induced by the topoisomerase I inhibitor SN38 activates cell cycle checkpoints which promote cell cycle arrest. This arrest can be abrogated in p53-defective cells by the Chk1 inhibitor 7-hydroxystaurosporine (UCN-01). Previously, we compared p53 wild-type MCF10A cells with derivatives whose p53 function was inhibited by over-expression of the(More)
Micellar catalysis enables copper-catalyzed silylcupration of a variety of electron-deficient alkynes, thereby providing access to isomerically pure E- or Z-β-silyl-substituted carbonyl derivatives. These reactions take place in minutes, afford high yields and stereoselectivity, and are especially tolerant of functional groups present in the substrates. The(More)
Asymmetric gold-catalyzed hydrocarboxylations are reported that show broad substrate scope. The hydrophobic effect associated with in situ-formed aqueous nanomicelles gives good to excellent ee's of product lactones. In-flask product isolation, along with the recycling of the catalyst and the reaction medium, are combined to arrive at an especially(More)
The first examples of gold-catalyzed cyclizations of diols and triols to the corresponding hetero- or spirocycles in an aqueous medium are presented. These reactions take place within nanomicelles, where the hydrophobic effect is operating, thereby driving the dehydrations, notwithstanding the surrounding water. By the addition of simple salts such as(More)
A mild method for the synthesis of highly functionalized [3]-[6]dendralenes is reported, representing a general strategy to diversely substituted higher homologues of the dendralenes. The methodology utilizes allenoates bearing various substitution patterns, along with a wide range of boron and alkenyl nucleophiles that couple under palladium catalysis(More)
  • 1