Learn More
The long-term effects of the systemic administration of DSP4 (N-(2-chloroethyl)N-ethyl-2-bromobenzylamine hydrochloride), a selective noradrenergic neurotoxin, on the endogenous levels of monoamines and their metabolites and on alpha- and beta-adrenoceptors in selected brain regions of the rat were examined. After 7 days, DSP4 caused a marked reduction(More)
The dopamine D4 receptor (D4R) has received considerable interest because of its higher affinity for atypical antipsychotics, the extremely polymorphic nature of the human gene and the genetic association with attention deficit and hyperactivity disorder (ADHD). Several efforts have been undertaken to determine the D4R expression pattern in the brain using(More)
Benzodiazepines (BDZs) are the most widely prescribed class of psychoactive drugs in current therapeutic use, despite the important unwanted side-effects that they produce such as sedation, myorelaxation, ataxia, amnesia, ethanol and barbiturate potentiation and tolerance. Searching for safer BDZ-receptor (BDZ-R) ligands we have recently demonstrated the(More)
1. The mechanisms of action of antagonists of the gamma-aminobutyric acid C (GABA(C)) receptor picrotoxin, quercetin and pregnanolone were studied. 2. Ionic currents (chloride), mediated through human homomeric GABA rho(1) receptors expressed in Xenopus oocytes, were recorded by two-electrode voltage clamp. 3. Dose-response (D-R) curves and kinetic(More)
A study was made of the effects of di- and trivalent cations on homomeric rho 1-type gamma-aminobutyrate (GABA rho 1) receptors expressed in Xenopus oocytes after injection of mRNA coding for the GABA rho 1 subunit. GABA elicited large currents with a Kd approximately 1 microM. The properties of these GABA rho 1 receptors were similar to those of native(More)
The modulation of ionotropic gamma-aminobutyric acid (GABA) receptors (GABA-gated Cl(-) channels) by a group of natural and synthetic flavonoids was studied in electrophysiological experiments. Quercetin, apigenin, morine, chrysin and flavone inhibited ionic currents mediated by alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors expressed in(More)
Flavonoids isolated from plants used as tranquilizers in folkloric medicine have a selective affinity, for central benzodiazepine receptors (BDZ-Rs) and some of them possess a pharmacological profile compatible with a partial agonist action. Synthetic derivatives of the common flavone nucleus, give rise to high affinity ligands when electronegative groups(More)
Nitric oxide (NO) is involved in synaptic plasticity in the hippocampus through different presynaptic and postsynaptic mechanisms that include the modulation of the GABAergic neurotransmission. Inhibitory synapses on hippocampal pyramidal neurons are known to possess the molecular machinery for retrograde NO-signaling, but the modulation of GABAARs function(More)
Quercetin is a natural flavonoid widely distributed in plants that acts as a neuroprotective agent and modulates the activity of different synaptic receptors and ion channels, including the ionotropic GABA receptors. GABA(Aρ₁) receptors were shown to be antagonized by quercetin, but the mechanisms underlying these antagonistic actions are still unknown. We(More)
Neurons of the vertebrate retina possess receptors for many neurotransmitters. Particularly interesting is a new type of GABA receptor (GABA rho) that, in contrast to GABAA and GABAB receptors, shows very little desensitization, is not blocked by bicuculline, and is not activated by baclofen. Homomeric human GABA rho 1 receptors were expressed in Xenopus(More)