Sonya K Sterba8
Patrick J Curran6
Ruth E Baldasaro3
8Sonya K Sterba
6Patrick J Curran
Learn More
The authors propose new procedures for evaluating direct, indirect, and total effects in multilevel models when all relevant variables are measured at Level 1 and all effects are random. Formulas are provided for the mean and variance of the indirect and total effects and for the sampling variances of the average indirect and total effects. Simulations show(More)
Growth mixture models are often used to determine if subgroups exist within the population that follow qualitatively distinct developmental trajectories. However, statistical theory developed for finite normal mixture models suggests that latent trajectory classes can be estimated even in the absence of population heterogeneity if the distribution of the(More)
Many important research hypotheses concern conditional relations in which the effect of one predictor varies with the value of another. Such relations are commonly evaluated as multiplicative interactions and can be tested in both fixed- and random-effects regression. Often, these interactive effects must be further probed to fully explicate the nature of(More)
Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model, nonnormal(More)
Drawing on a large, nationally representative sample of young adults (the National Longitudinal Study of Adolescent Health; N = 15,701; M age = 29.10), we evaluated the psychometric properties of the Mini-IPIP, a 20-item inventory designed to concisely assess the 5 factors of personality. The results suggest that the Mini-IPIP has a 5-factor structure; most(More)
When conducting an integrative analysis of data obtained from multiple independent studies, a fundamental problem is to establish commensurate measures for the constructs of interest. Fortunately, procedures for evaluating and establishing measurement equivalence across samples are well developed for the linear factor model and commonly used item response(More)
Individually randomized treatments are often administered within a group setting. As a consequence, outcomes for treated individuals may be correlated due to provider effects, common experiences within the group, and/or informal processes of socialization. In contrast, it is often reasonable to regard outcomes for control participants as independent, given(More)
The person-oriented approach seeks to match theories and methods that portray development as a holistic, highly interactional, and individualized process. Over the past decade, this approach has gained popularity in developmental psychopathology research, particularly as model-based varieties of person-oriented methods have emerged. Although these methods(More)
Psychologists have long been interested in characterizing individual differences in change over time. It is often plausible to assume that the distribution of these individual differences is continuous in nature, yet theory is seldom so specific as to designate its parametric form (e.g., normal). Semiparametric groups-based trajectory models (SPGMs) were(More)
Previous research has compared methods of estimation for fitting multilevel models to binary data, but there are reasons to believe that the results will not always generalize to the ordinal case. This article thus evaluates (a) whether and when fitting multilevel linear models to ordinal outcome data is justified and (b) which estimator to employ when(More)