Daniel Isabey

Learn More
To investigate the effect of positive or negative inspiratory pressure on respiration, eight subjects breathed, either without or with added external dead space (VD, 600 ml), through either added inspiratory laminar flow resistances (RES; peak inspiratory airway pressure, Pinsp, down to -9 cmH2O) or with inspiratory pressure support (IPS; Pinsp up to +10(More)
This study aims at quantifying the cellular mechanical properties based on a partitioning of the cytoskeleton in a cortical and a cytosolic compartments. The mechanical response of epithelial cells obtained by magnetocytometry - a micromanipulation technique which uses twisted ferromagnetic beads specifically linked to integrin receptors - was purposely(More)
This paper describes a technique that combines radial MRI and phase contrast (PC) to map the velocities of hyperpolarized gases ((3)He) in respiratory airways. The method was evaluated on well known geometries (straight and U-shaped pipes) before it was applied in vivo. Dynamic 2D maps of the three velocity components were obtained from a 10-mm slice with(More)
Computational fluid dynamics (CFD) and magnetic resonance (MR) gas velocimetry were concurrently performed to study airflow in the same model of human proximal airways. Realistic in vivo-based human airway geometry was segmented from thoracic computed tomography. The three-dimensional numerical description of the airways was used for both generation of a(More)
Cell mechanics provides an integrated view of many biological phenomena which are intimately related to cell structure and function. Because breathing constitutes a sustained motion synonymous with life, pulmonary cells are normally designed to support permanent cyclic stretch without breaking, while receiving mechanical cues from their environment. The(More)
Measurement of input respiratory impedance is carried out by superimposing forced oscillations on spontaneous breathing. The latter thus acts as a quasi-steady unidirectional flow component, with effects on the measured impedance that are habitually neglected (linearity assumption). We examined the validity of that assumption in the case of a turbulent(More)
Myotonic dystrophy (MD) can be responsible for increased inspiratory muscle loading, the origin of which is debated, with some authors incriminating distal lesions and others central abnormalities. Using a recent non-invasive method based on single transient pressure-wave reflection analysis, we measured central airway calibre from the mouth to the carina(More)
We show herein how mechanical forces at macro or micro scales may affect the biological response at the nanoscale. The reason resides in the intimate link between chemistry and mechanics at the molecular level. These interactions occur under dynamic conditions such as the shear stress induced by flowing blood or the intracellular tension. Thus, resisting(More)
This study aims at improving the understanding of mechanisms responsible for cell sensitivity to extracellular environment. We explain how substrate mechanical properties can modulate the force regulation of cell sensitive elements primarily adhesion sites. We present a theoretical and experimental comparison between two radically different approaches of(More)