Daniel Hofstetter

Learn More
Continuous wave operation of quantum cascade lasers is reported up to a temperature of 312 kelvin. The devices were fabricated as buried heterostructure lasers with high-reflection coatings on both laser facets, resulting in continuous wave operation with optical output power ranging from 17 milliwatts at 292 kelvin to 3 milliwatts at 312 kelvin, at an(More)
In this Letter, we report the tuning of the emission wavelength of a single mode distributed feedback quantum cascade laser by modifying the mode effective refractive index using fluids. A fabrication procedure to encapsulate the devices in polymers for microfluidic delivery is also presented. The integration of microfluidics with semiconductor laser(More)
We review our recent progress on the fabrication of near-infrared photodetectors based on intersubband transitions in AlN/GaN superlattice structures. Such devices were first demonstrated in 2003, and have since then seen a quite substantial development both in terms of detector responsivity and high speed operation. Nowadays, the most impressive results(More)
The possible importance of zinc-oxide-based optoelectronic devices is reviewed in this paper, which places special emphasis on the need to achieve p-type ZnO. ABSTRACT | ZnO is an attractive material for applications in electronics, photonics, acoustics, and sensing. In optical emitters, its high exciton binding energy (60 meV) gives ZnO an edge over other(More)
On-farm manure storage pits contain both toxic and asphyxiating gases such as hydrogen sulfide, carbon dioxide, methane, and ammonia. Farmers and service personnel occasionally need to enter these pits to conduct repair and maintenance tasks. One intervention to reduce the toxic and asphyxiating gas exposure risk to farm workers when entering manure pits is(More)
This review covers the physics, epitaxial growth, fabrication, and characterization of optoelectronic devices for use in video players and other consumer electronics as well as in commercial systems. ABSTRACT | We report on the physics, epitaxial growth, fabrication, and characterization of optoelectronic devices based on intersubband transitions in the(More)
  • 1