Learn More
[1] Radar observations of the sea surface at C-Band and small incidence angles are used to investigate some properties of the surface slope probability density function (pdf). The method is based on the analysis of the variation of the radar cross-section with incidence angle, assuming a backscattering process following the Geometrical Optics theory. First,(More)
Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable(More)
The origin of Galactic cosmic rays (with energies up to 10 15 eV) remains unclear, though it is widely believed that they originate in the shock waves of expanding supernova remnants [1][2]. Currently the best way to investigate their acceleration and propagation is by observing the γ-rays produced when cosmic rays interact with interstellar gas [3]. Here(More)
Aims. We present results from deep observations of the Galactic shell-type supernova remnant (SNR) RX J1713.7−3946 (also known as G347.3−0.5) conducted with the complete H.E.S.S. array in 2004. Methods. Detailed morphological and spatially resolved spectral studies reveal the very-high-energy (VHE – Energies E > 100 GeV) gamma-ray aspects of this object(More)
The Vela supernova remnant (SNR) is a complex region containing a number of sources of non-thermal radiation. The inner section of this SNR, within 2 degrees of the pulsar PSR B0833−45, has been observed by the H.E.S.S. γ-ray atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from an extended region to the south of the pulsar, within(More)
Aims. The BL Lac object RGB J0152+017 (z = 0.080) was predicted to be a very high-energy (VHE; > 100 GeV) γ-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods. We(More)
We present a "nanoparticle-in-alloy" material approach with silicide and germanide fillers leading to a potential 5-fold increase in the thermoelectric figure of merit of SiGe alloys at room temperature and 2.5 times increase at 900 K. Strong reductions in computed thermal conductivity are obtained for 17 different types of silicide nanoparticles. We(More)
Further information on publisher's website: httpXGGdxFdoiForgGIHFIHQVGn—tureHRTVH Publisher's copyright statement: Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes(More)
In the past few decades, several models have predicted an energy dependence of the speed of light in the context of quantum gravity. For cosmological sources such as active galaxies, this minuscule effect can add up to measurable photon-energy dependent time lags. In this Letter a search for such time lags during the High Energy Stereoscopic System(More)
The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central(More)