Learn More
Recent studies suggest that neurons born in the developing basal forebrain migrate long distances perpendicularly to radial glia and that many of these cells reach the developing neocortex. This form of tangential migration, however, has not been demonstrated in vivo, and the sites of origin, pathways of migration and final destinations of these neurons in(More)
Proximal-distal outgrowth of the vertebrate limb bud is regulated by the apical ectodermal ridge (AER), which forms at an invariant position along the dorsal-ventral (D/V) axis of the embryo. We have studied the genetic and cellular events that regulate AER formation in the mouse. In contrast to implications from previous studies in chick, we identified two(More)
There are currently no noninvasive imaging methods available for auditory brain mapping in mice, despite the increasing use of genetically engineered mice to study auditory brain development and hearing loss. We developed a manganese-enhanced MRI (MEMRI) method to map regions of accumulated sound-evoked activity in awake, normally behaving mice. To(More)
Given the importance of genetically modified mice in studies of mammalian brain development and human congenital brain diseases, MRI has the potential to provide an efficient in vivo approach for analyzing mutant phenotypes in the early postnatal mouse brain. The combination of reduced tissue contrast at the high magnetic fields required for mice, and the(More)
The visualisation of living tissues at microscopic resolution is attracting attention in several fields. In medicine, the goals are to image healthy and diseased tissue with the aim of providing information previously only available from biopsy samples. In basic biology, the goal may be to image biological models of human disease or to conduct longitudinal(More)
The contribution of early cell lineage to regional fate in the mammalian forebrain remains poorly understood. Previous lineage-tracing studies using retroviral methods were only begun at mid-neurogenesis and have suffered from region-specific retroviral silencing. We have been able to study cell lineage in the telencephalon from the onset of neurogenesis by(More)
To elucidate the role of cardiac myosin-binding protein-C (MyBP-C) in myocardial structure and function, we have produced mice expressing altered forms of this sarcomere protein. The engineered mutations encode truncated forms of MyBP-C in which the cardiac myosin heavy chain-binding and titin-binding domain has been replaced with novel amino acid residues.(More)
The history of developmental and genetic analysis in the mouse has made it the model of choice for studying mammalian embryogenesis. Presently lacking is a simple technique for efficiently analyzing early mouse mutant phenotypes in utero. We demonstrate application of a real-time imaging method called ultrasound backscatter microscopy for visualizing mouse(More)
The presence of amyloid-beta (Abeta) plaques in the brain is a hallmark pathological feature of Alzheimer's disease (AD). Transgenic mice overexpressing mutant amyloid precursor protein (APP), or both mutant APP and presenilin-1 (APP/PS1), develop Abeta plaques similar to those in AD patients, and have been proposed as animal models in which to test(More)
Physiological study of the developing mouse circulation has lagged behind advances in molecular cardiology. Using an innovative high-frequency Doppler system, we noninvasively characterized circulatory hemodynamics in early mouse embryos. We used image-guided 43 MHz pulsed-wave (PW) Doppler ultrasound to study the umbilical artery and vein, or dorsal aorta(More)