Learn More
Recent studies suggest that neurons born in the developing basal forebrain migrate long distances perpendicularly to radial glia and that many of these cells reach the developing neocortex. This form of tangential migration, however, has not been demonstrated in vivo, and the sites of origin, pathways of migration and final destinations of these neurons in(More)
Proximal-distal outgrowth of the vertebrate limb bud is regulated by the apical ectodermal ridge (AER), which forms at an invariant position along the dorsal-ventral (D/V) axis of the embryo. We have studied the genetic and cellular events that regulate AER formation in the mouse. In contrast to implications from previous studies in chick, we identified two(More)
There are currently no noninvasive imaging methods available for auditory brain mapping in mice, despite the increasing use of genetically engineered mice to study auditory brain development and hearing loss. We developed a manganese-enhanced MRI (MEMRI) method to map regions of accumulated sound-evoked activity in awake, normally behaving mice. To(More)
The contribution of early cell lineage to regional fate in the mammalian forebrain remains poorly understood. Previous lineage-tracing studies using retroviral methods were only begun at mid-neurogenesis and have suffered from region-specific retroviral silencing. We have been able to study cell lineage in the telencephalon from the onset of neurogenesis by(More)
The history of developmental and genetic analysis in the mouse has made it the model of choice for studying mammalian embryogenesis. Presently lacking is a simple technique for efficiently analyzing early mouse mutant phenotypes in utero. We demonstrate application of a real-time imaging method called ultrasound backscatter microscopy for visualizing mouse(More)
Given the importance of genetically modified mice in studies of mammalian brain development and human congenital brain diseases, MRI has the potential to provide an efficient in vivo approach for analyzing mutant phenotypes in the early postnatal mouse brain. The combination of reduced tissue contrast at the high magnetic fields required for mice, and the(More)
The cortex is thought to be the primary site of sensory plasticity, particularly during development. Here, we report that large-scale reorganization of the mouse auditory midbrain tonotopic map is induced by a specific sound-rearing environment consisting of paired low- (16 kHz) and high-frequency (40 kHz) tones. To determine the potential for plasticity in(More)
Multipotent neuroblasts (NBs) are produced throughout life by neural stem cells in the forebrain subventricular zone (SVZ), and are able to travel long distances to the olfactory bulb. On arrival in the bulb, migrating NBs normally replace olfactory neurons, raising interest in their potential for novel cell replacement therapies in various disease(More)
The visualisation of living tissues at microscopic resolution is attracting attention in several fields. In medicine, the goals are to image healthy and diseased tissue with the aim of providing information previously only available from biopsy samples. In basic biology, the goal may be to image biological models of human disease or to conduct longitudinal(More)
We used ultrasound image-guided injections of high-titer retroviral vectors to obtain widespread introduction of genes into the mouse nervous system in utero as early as embryonic day 8.5 (E8.5). The vectors used included internal promoters that substantially improved proviral gene expression in the ventricular zone of the brain. To demonstrate the utility(More)