Learn More
Circadian rhythms of mammals are timed by an endogenous clock with a period of about 24 hours located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Light synchronizes this clock to the external environment by daily adjustments in the phase of the circadian oscillation. The mechanism has been thought to involve the release of excitatory amino(More)
The NAD-dependent histone deacetylation of Sir2 connects cellular metabolism with gene silencing as well as aging in yeast. Here, we show that mammalian Sir2alpha physically interacts with p53 and attenuates p53-mediated functions. Nicotinamide (Vitamin B3) inhibits an NAD-dependent p53 deacetylation induced by Sir2alpha, and also enhances the p53(More)
The p160 family of coactivators, SRC-1, GRIP1/TIF2, and p/CIP, mediate transcriptional activation by nuclear hormone receptors. Coactivator-associated arginine methyltransferase 1 (CARM1), a previously unidentified protein that binds to the carboxyl-terminal region of p160 coactivators, enhanced transcriptional activation by nuclear receptors, but only when(More)
A coupled ocean-atmosphere data assimilation procedure yields improved forecasts of El Niño for the 1980s compared with previous forecasting procedures. As in earlier forecasts with the same model, no oceanic data were used, and only wind information was assimilated. The improvement is attributed to the explicit consideration of air-sea interaction in the(More)
An ensemble of twenty four coupled ocean-atmosphere models has been compared with respect to their performance in the tropical Paci®c. The coupled models span a large portion of the parameter space and di€er in many respects. The intercomparison includes TOGA (Tropical Ocean Global Atmosphere)-type models consisting of high-resolution tropical ocean models(More)
Circadian clocks are complex biochemical systems that cycle with a period of approximately 24 hours. They integrate temporal information regarding phasing of the solar cycle, and adjust their phase so as to synchronize an organism's internal state to the local environmental day and night. Nocturnal light is the dominant regulator of this entrainment. In(More)
To gain an understanding of the molecular basis for resistance to rice blast (Magnaporthe grisea), we have initiated a project to clone Pi5(t), a locus associated with broad-spectrum resistance to diverse blast isolates. AFLP-derived markers linked to Pi5(t)-mediated resistance were isolated using bulked segregant analysis of F(2) populations generated by(More)
We have investigated the role of poly(ADP-ribose) polymerase (PARP) activation in rat brain in a model of sublethal transient global ischemia. Adult male rats were subjected to 15 min of ischemia with brain temperature reduced to 34 degrees C, followed by 1, 2, 4, 8, 16, 24, and 72 h of reperfusion. PARP mRNA expression was examined in the hippocampus using(More)
This report examines the distribution of an RNA polymerase I transcription factor (upstream binding factor; UBF), pre-rRNA processing factors (nucleolin and fibrillarin), and pre-rRNAs throughout mitosis and postmitotic nucleologenesis in HeLa cells. The results demonstrate that nucleolin, fibrillarin, and pre-rRNAs synthesized at G2/M phase of the previous(More)
Ghrelin is a 28 a.a. gastric peptide, recently identified as a natural ligand of the growth hormone secretagogue receptor (orphan receptor distinct from the receptor for growth hormone releasing hormone). In the present study, radioimmunoassay demonstrated ghrelin-like material in the rat oxyntic mucosa with moderate amounts also in antrum and duodenum.(More)