Daniel Guitton

Learn More
The frontal eye field (FEF) and superior colliculus (SC) are thought to form two parallel systems for generating saccadic eye movements. The SC is thought classically to mediate reflex-like orienting movements. Thus it can be hypothesized that the FEF exerts a higher level control on a visual grasp reflex. To test this hypothesis we have studied the(More)
Gaze, the direction of the visual axis in space, is the sum of the eye position relative to the head (E) plus head position relative to space (H). In the old explanation, which we call the oculocentric motor strategy, of how a rapid orienting gaze shift is controlled, it is assumed that 1) a saccadic eye movement is programmed with an amplitude equal to the(More)
Electrical stimulation of the cat superior colliculus (SC), in conjunction with the accurate measurement of elicited eye movements and histologically verified electrode positions, has revealed a striking antero-posterior variation in collicular organization. Three zones could be defined in the SC on the basis of eye movement patterns and associated neck(More)
1. Orienting movements, consisting of coordinated eye and head displacements, direct the visual axis to the source of a sensory stimulus. A recent hypothesis suggests that the CNS may control gaze position (gaze = eye-relative-to-space = eye-relative-to-head + head-relative-to-space) by the use of a feedback circuit wherein an internally derived(More)
1. In this paper we describe the movement-related discharges of tectoreticular and tectoreticulospinal neurons [together called TR (S) Ns] that were recorded in the superior colliculus (SC) of alert cats trained to generate orienting movements in various behavioral situations; the cats' heads were either completely unrestrained (head free) or immobilized(More)
We have investigated the ability of humans to stabilize their heads in space and assessed the influence of mental set and the relative importance of visual and vestibular cues. Ten normal subjects and 3 patients with bilateral vestibular loss were studied. Subjects were fixed firmly to the chair of a turntable facing a screen on which was projected a target(More)
The dynamic behavior of primate (Macaca fascicularis) inhibitory burst neurons (IBNs) during head-fixed saccades was analyzed by using system identification techniques. Neurons were categorized as IBNs on the basis of their anatomic location as well as by their activity during horizontal head-fixed saccadic and smooth pursuit eye movements and vestibular(More)
The goal of this study was to identify and model the three-dimensional (3-D) geometric transformations required for accurate saccades to distant visual targets from arbitrary initial eye positions. In abstract 2-D models, target displacement in space, retinal error (RE), and saccade vectors are trivially interchangeable. However, in real 3-D space, RE is a(More)
The purpose of this investigation was to describe the neural constraints on three-dimensional (3-D) orientations of the eye in space (Es), head in space (Hs), and eye in head (Eh) during visual fixations in the monkey and the control strategies used to implement these constraints during head-free gaze saccades. Dual scleral search coil signals were used to(More)
Gaze is the position of the visual axis in space and is the sum of the eye movement relative to the head plus head movement relative to space. In monkeys, a gaze shift is programmed with a single saccade that will, by itself, take the eye to a target, irrespective of whether the head moves. If the head turns simultaneously, the saccade is correctly reduced(More)