Learn More
Although interactions between superoxide (O(2)(.-)) and nitric oxide underlie many physiologic and pathophysiologic processes, regulation of this crosstalk at the enzymatic level is poorly understood. Here, we demonstrate that xanthine oxidoreductase (XOR), a prototypic superoxide O(2)(.-) -producing enzyme, and neuronal nitric oxide synthase (NOS1)(More)
Impaired leptin signalling in obesity is increasingly implicated in cardiovascular pathophysiology. To explore mechanisms for leptin activity in the heart, we hypothesized that physiological leptin signalling participates in maintaining cardiac beta-adrenergic regulation of excitation-contraction coupling. We studied 10-week-old (before development of(More)
S-Nitrosylation is a ubiquitous post-translational modification that regulates diverse biologic processes. In skeletal muscle, hypernitrosylation of the ryanodine receptor (RyR) causes sarcoplasmic reticulum (SR) calcium leak, but whether abnormalities of cardiac RyR nitrosylation contribute to dysfunction of cardiac excitation-contraction coupling remains(More)
Altered Ca(2+) homeostasis is a salient feature of heart disease, where the calcium release channel ryanodine receptor (RyR) plays a major role. Accumulating data support the notion that neuronal nitric oxide synthase (NOS1) regulates the cardiac RyR via S-nitrosylation. We tested the hypothesis that NOS1 deficiency impairs RyR S-nitrosylation, leading to(More)
Nitric oxide (NO) exerts ubiquitous signaling via posttranslational modification of cysteine residues, a reaction termed S-nitrosylation. Important substrates of S-nitrosylation that influence cardiac function include receptors, enzymes, ion channels, transcription factors, and structural proteins. Cardiac ion channels subserving excitation-contraction(More)
The role of nitric oxide (NO) in cardiac contractility is complex and controversial. Several NO donors have been reported to cause positive or negative inotropism. NO can bind to guanylate cyclase, increasing cGMP production and activating PKG. NO may also directly S-nitrosylate cysteine residues of specific proteins. We used the isolated rat heart(More)
Atherosclerosis is a chronic disease that affects peripheral arteries and the aorta. Several inflammatory processes are required until the production of an atheroma. Before the atheroma appears, endothelial dysfunction is a key event. We hypothesized that endothelial dysfunction occurs in a mouse model of mild dyslipidemia, the mouse deficient in(More)
Although protein S-nitrosylation is increasingly recognized as mediating nitric oxide (NO) signaling, roles for protein denitrosylation in physiology remain unknown. Here, we show that S-nitrosoglutathione reductase (GSNOR), an enzyme that governs levels of S-nitrosylation by promoting protein denitrosylation, regulates both peripheral vascular tone and(More)