Learn More
We review a large multidisciplinary effort to develop a family of autonomous robots capable of rapid, agile maneuvers in and around natural and artificial vertical terrains such as walls, cliffs, caves, trees and rubble. Our robot designs are inspired by (but not direct copies of) biological climbers such as cockroaches, geckos, and squirrels. We are(More)
— This paper reviews a template for dynamical climbing originating in biology, explores its stability properties in a numerical model, and presents empirical data from a physical prototype as evidence of the feasibility of adapting the dynamics of the template to robot that runs vertically upward. The recently proposed pendulous climbing model abstracts(More)
We compare manual testing without any automation performed by a tester at a software company with model-based testing (MBT) performed by a tester at a research center. The system under test (SUT), of which two different versions were tested by each of the two testers, is a professionally developed web-based data collection system that now is in use. (More)
Integration of the numerous mechanisms that have been suggested to contribute to optimization of O(2) supply to meet O(2) need in skeletal muscle requires a systems biology approach which permits quantification of these physiological processes over a wide range of length scales. Here we describe two individual computational models based on in vivo and in(More)
Adenosine triphosphate (ATP) is known to be released from the erythrocyte in an oxygen (O2) dependent manner. Since ATP is a potent vasodilator, it is proposed to be a key regulator in the pathway that mediates micro-vascular response to varying tissue O2 demand. We propose that ATP signaling mainly originates in the capillaries due to the relatively long(More)
BACKGROUND Peripheral vascular disease in pre-diabetes may involve altered sympathetically-mediated vascular control. Thus, we investigated if pre-diabetes modifies baseline sympathetic Y(1)-receptor (Y(1)R) and α(1)-receptor (α(1)R) control of hindlimb blood flow (Q(fem)) and vascular conductance (VC). METHODS Q(fem) and VC were measured in pre-diabetic(More)
Erythrocytes are proposed to be involved in blood flow regulation through both shear- and oxygen-dependent mechanisms for the release of adenosine triphosphate (ATP), a potent vasodilator. In a recent study, the dynamics of shear-dependent ATP release from erythrocytes was measured using a microfluidic device with a constriction in the channel to increase(More)
A one-dimensional (1D) reaction-diffusion equation is presented to model oxygen delivery by the microcirculation and oxygen diffusion and consumption in intact muscle. This model is motivated by in vivo experiments in which oscillatory boundary conditions are used to study the mechanisms of local blood flow regulation in response to changes in the tissue(More)