Daniel G Simpson

Learn More
BACKGROUND AND PURPOSE Increased circulating levels of L-alpha-lysophosphatidylinositol (LPI) are associated with cancer and LPI is a potent, ligand for the G-protein-coupled receptor GPR55. Here we have assessed the modulation of breast cancer cell migration, orientation and polarization by LPI and GPR55. EXPERIMENTAL APPROACH Quantitative RT-PCR was(More)
We have examined how different degrees (0.5%, 1.0%, 2.5%, 5.0%, and 10.0%) and directions of stretch regulate the turnover and accumulation of contractile proteins in cultured neonatal cardiac myocytes (NCMs). In pulse-chase experiments, stellate-shaped NCMs with random arrays of myofibrils (MFs) exhibited a threshold response to stretch. With respect to(More)
To determine whether the formation and maintenance of focal adhesions and costameres in cardiac myocytes are influenced by the mechanical forces that they transmit, we mechanically unloaded these cells by inhibiting their spontaneous contractile activity with the calcium-channel blocker nifedipine (12 microM). Interference-reflection and fluorescence(More)
Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart(More)
Vinculin is a major cytoskeletal component in striated muscle, where it has been reported to form a rib-like structure between the cell membrane and the Z-disk termed a costamere. This arrangement of vinculin has been purported to be involved in the alignment of the myofibrils. However, the three-dimensional arrangement of vinculin in relation to the Z-disk(More)
The reorganization of myofibrils and the re-formation of intercalated discs was examined in neonatal rat cardiac muscle cells during the first 72 h of culture. Rhodamine phalloidin was used to monitor the organizational state of the myofibrils and antibodies to desmoplakin and vinculin were used as markers for the presence of desmosomes and fasciae(More)
Mechanical forces play an essential role in regulating the synthesis and assembly of contractile proteins into the sarcomeres of cardiac myocytes. To examine if physical forces might also regulate the turnover of contractile proteins at a posttranslational site of control, beating and nonbeating neonatal cardiac myocytes (NCM) were subjected to a 5% static(More)
Adult feline ventricular myocytes cultured on a laminin-coated substratum reestablish intercellular junctions, yet disassemble their myofibrils. Immunofluorescence microscopy reveals that these non-beating heart cells lack vinculin-positive focal adhesions; moreover, intercellular junctions are also devoid of vinculin. When these quiescent myocytes are(More)
Previous studies have shown that the rates of protein synthesis observed in embryonic and neonatal heart cells in culture are as much as nine times greater than the rates of synthesis observed in the intact adult heart either in situ or in isolated perfusion studies. This study addressed whether adult cardiomyocytes in long-term culture maintain the protein(More)
Vinculin is a cytoskeletal protein that is believed to be an essential component in the linkage of cytoskeletal actin filaments to the plasma membrane. To investigate the precise function of vinculin in the development of cardiac myofibrils, antisense oligodeoxynucleotides complementary to vinculin mRNA were used to perturb the expression of the protein(More)