Learn More
The marine toxin gambierol, a polyether ladder toxin derived from the marine dinoflagellate Gambierdiscus toxicus, was evaluated for interaction with voltage-gated sodium channels (VGSCs) in cerebellar granule neuron (CGN) cultures. At concentrations ranging from 10 nM to 10 microM, gambierol alone had no effect on the intracellular Ca2+ concentration(More)
A range of extrinsic signals, including afferent activity, affect neuronal growth and plasticity. Neuronal activity regulates intracellular Ca(2+), and activity-dependent calcium signaling has been shown to regulate dendritic growth and branching (Konur and Ghosh, 2005). NMDA receptor (NMDAR) stimulation of Ca(2+)/calmodulin-dependent protein kinase(More)
Florida red tides are a natural phenomenon caused by dense aggregations of single cell or several species of unicellular organisms. Patches of discolored water, dead or dying fish, and respiratory irritants in the air often characterize these algal blooms. In humans, two distinct clinical entities, depending on the route of exposure, are associated with(More)
Potent marine neurotoxins known as brevetoxins are produced by the 'red tide' dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols. The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has(More)
  • D G Baden
  • 1989
Brevetoxins are lipid-soluble polyether marine toxins of unique structure and pharmacological function. Toxins are active in vivo in the nanomolar to picomolar concentration range and in vitro in isolated neuromuscular or giant axon preparations and in single-cell or subcellular model systems. Their effect is excitatory, mediated by the enhancement of(More)
Brevetoxin-3 (PbTx-3), produced by marine dinoflagellates (Ptychodiscus brevis), is a lipophilic 11-ring polyether molecule that binds with high affinity to site 5 of the voltage-sensitive sodium (Na+) channel. The effects of PbTx-3 and its derivatives were studied in cell-attached membrane patches on neurons dissociated from neonatal rat nodose ganglia by(More)
Neuronal activity regulates brain development and synaptic plasticity through N-methyl-D-aspartate receptors (NMDARs) and calcium-dependent signaling pathways. Intracellular sodium ([Na(+)](i)) also exerts a regulatory influence on NMDAR channel activity, and [Na(+)](i) may, therefore, function as a signaling molecule. In an attempt to mimic the influence(More)
Symptoms consistent with inhalation toxicity have long been associated with Florida red tides, and various causal agents have been proposed. Research since 1981 has centered on a group of naturally occurring trans-fused cyclic polyether compounds called brevetoxins that are produced by a marine dinoflagellate known as Karenia brevis. Numerous individual(More)
We developed a competitive enzyme-linked immunosorbent assay (ELISA) to analyze brevetoxins, using goat anti-brevetoxin antibodies obtained after immunization with keyhole limpet hemocyanin-brevetoxin conjugates, in combination with a three-step signal amplification process. The procedure, which used secondary biotinylated antibodies,(More)
The electrical signals of neurons are fundamentally dependent on voltage-gated sodium channels (VGSCs), which are responsible for the rising phase of the action potential. An array of naturally occurring and synthetic neurotoxins have been identified that modify the gating properties of VGSCs. Using murine neocortical neurons in primary culture, we have(More)