Learn More
A miniature magnetic position sensor used for three-dimensional ultrasound imaging was tested for precision and accuracy in vitro. The sensor alone was able to locate points with root-mean-square (rms) uncertainty of 1.7 mm and accuracy of 0.05 +/- 0.62 mm over its specified operating range of 50 cm. With an ultrasound imaging system, a point was located(More)
A phantom has been developed to quickly calibrate a freehand 3-D ultrasound (US) imaging system. Calibration defines the spatial relationship between the US image plane and an external tracking device attached to the scanhead. The phantom consists of a planar array of strings and beads, and a set of out-of-plane strings that guide the user to proper(More)
We report a study of the role of hemodynamic shear stress in the remodeling and failure of a peripheral artery bypass graft. Three separate scans of a femoral to popliteal above-knee bypass graft were taken over the course of a 16 month period following a revision of the graft. The morphology of the lumen is reconstructed from data obtained by a custom 3D(More)
BACKGROUND Traffic-related air pollution is consistently associated with cardiovascular morbidity and mortality. Recent human and animal studies suggest that exposure to air pollutants affects vascular function. Diesel exhaust (DE) is a major source of traffic-related air pollution. OBJECTIVES Our goal was to study the effects of short-term exposure to DE(More)
BACKGROUND & AIMS Three-dimensional (3D) ultrasound imaging of the total stomach volume has not yet been achieved. The aim of this study was to investigate whether a magnetic position sensor system for acquisition of 3D ultrasonograms could be used to determine gastric emptying rates and intragastric distribution. METHODS A system for position and(More)
BACKGROUND In order to establish a consistent method for brachial artery reactivity assessment, we analyzed commonly used approaches to the test and their effects on the magnitude and time-course of flow mediated dilation (FMD), and on test variability and repeatability. As a popular and noninvasive assessment of endothelial function, several different(More)
Accurate measurement of left-ventricular (LV) volume and function are important to monitor disease progression and assess prognosis in patients with heart disease. Existing methods of three-dimensional (3-D) imaging of the heart using ultrasound have shown the potential of this modality, but each suffers from inherent restrictions which limit its(More)
Three-dimensional echocardiography has demonstrated superiority over two-dimensional techniques in the determination of left ventricular mass and volumes. We describe a technique based on a magnetic tracking system which provides rapid three-dimensional image acquisition from multiple acoustic windows. Interactive three-dimensional border tracking and(More)
The objective of this study was to develop and validate a three-dimensional technique of left ventricular shape analysis. Geometric phantoms and left ventricles of excised calf hearts, normal human subjects, and one subject each with aortic stenosis and dilated cardiomyopathy were reconstructed from three-dimensional echocardiograms. The fit between the(More)
INTRODUCTION Serial monitoring of patients participating in clinical trials of carotid artery therapy requires noninvasive precision methods that are inexpensive, safe and widely available. Noninvasive ultrasonic duplex Doppler velocimetry provides a precision method that can be used for recruitment qualification, pre-treatment classification and post(More)