Learn More
Spatial navigation is a complex process requiring integration of visuoperceptual information. The present study examined how visuospatial function relates to navigational veering in Parkinson's disease, a movement disorder in which visuospatial cognition is affected by the degeneration of the basal ganglia and resulting dysfunction of the parietal lobes. We(More)
Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among(More)
The purpose of the study is to investigate whether there are age-related differences in locomotion due to changes in presence of vision, optic flow speed, and lateral flow asymmetry using virtual reality technology. Gait kinematics and heading direction were measured using a three-dimensional motion analysis system. Although older and younger adults were(More)
A shifted field of view, an altered perception of optic flow speed, and gait asymmetries may influence heading direction in Parkinson's disease (PD). PD participants (left body-side onset, LPD, n=14; right body-side onset, RPD, n=9) and Healthy Control participants (n=17) walked a virtual hallway in which the optic flow speeds of the walls varied.(More)
Visuoperceptual disorders have been identified in individuals with Parkinson’s disease (PD) and may affect the perception of optic flow for heading direction during navigation. Studies in healthy subjects have confirmed that heading direction can be determined by equalizing the optic flow speed (OS) between visual fields. The present study investigated the(More)
Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the(More)
  • 1