Daniel E. Shai

Learn More
The effect of lutetium doping on the structural, electronic, and magnetic properties of epitaxial EuO thin films grown by reactive molecular-beam epitaxy is experimentally investigated. The behavior of Lu-doped EuO is contrasted with doping by lanthanum and gadolinium. All three dopants are found to behave similarly despite differences in electronic(More)
The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining(More)
We report high-resolution angle-resolved photoemission studies of epitaxial thin films of the correlated 4d transition metal oxide ferromagnet SrRuO(3). The Fermi surface in the ferromagnetic state consists of well-defined Landau quasiparticles exhibiting strong coupling to low-energy bosonic modes which contributes to the large effective masses observed by(More)
We present high-resolution angle-resolved photoemission spectra of the heavy-fermion superconductor URu2Si2. Detailed measurements as a function of both photon energy and temperature allow us to disentangle a variety of spectral features, revealing the evolution of the low-energy electronic structure across the "hidden order" transition. Above the(More)
We present angle-resolved photoemission spectroscopy of Eu(1-x)Gd(x)O through the ferromagnetic metal-insulator transition. In the ferromagnetic phase, we observe Fermi surface pockets at the Brillouin zone boundary, consistent with density functional theory, which predicts a half-metal. Upon warming into the paramagnetic state, our results reveal a strong(More)
We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ~7(More)
Rare earth doping is the key strategy to increase the Curie temperature (T(C)) of the ferromagnetic semiconductor EuO. The interplay between doping and charge carrier density (n), and the limit of the T(C) increase, however, are yet to be understood. We report measurements of n and T(C) of Gd-doped EuO over a wide range of doping levels. The results show a(More)
The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two known families: Re(2-x)Ce(x)CuO4 and A(1-x)La(x)CuO2. Here we report in situ angle-resolved photoemission(More)
  • 1