Daniel E Morse

Learn More
Earth's biota produces vast quantities of polymerized silica at ambient temperatures and pressures by mechanisms that are not understood. Silica spicules constitute 75% of the dry weight of the sponge Tethya aurantia, making this organism uniquely tractable for analyses of the proteins intimately associated with the biosilica. Each spicule contains a(More)
Nanoscale control of the polymerization of silicon and oxygen determines the structures and properties of a wide range of siloxane-based materials, including glasses, ceramics, mesoporous molecular sieves and catalysts, elastomers, resins, insulators, optical coatings, and photoluminescent polymers. In contrast to anthropogenic and geological syntheses of(More)
A specialized extracellular matrix of proteins and polysaccharides controls the morphology and packing of calcium carbonate crystals and becomes occluded within the mineralized composite during formation of the molluscan shell and pearl. We have cloned and characterized the cDNA coding for Lustrin A, a newly described matrix protein from the nacreous layer(More)
Structural materials in nature exhibit remarkable designs with building blocks, often hierarchically arranged from the nanometer to the macroscopic length scales. We report on the structural properties of biosilica observed in the hexactinellid sponge Euplectella sp. Consolidated, nanometer-scaled silica spheres are arranged in well-defined microscopic(More)
gamma-Aminobutyric acid (a simple amino acid and potent neurotransmitter in human brain and other tissues of higher animals) and certain of its congeners rapidly and synchronously induce planktonic larvae of the red abalone, Haliotis rufescens, to settle and commence behavioral and developmental metamorphosis. These naturally occurring inducers of algal(More)
Almost all mineralized tissues contain proteins that are unusually acidic. As they are also often intimately associated with the mineral phase, they are thought to fulfill important functions in controlling mineral formation. Relatively little is known about these important proteins, because their acidic nature causes technical difficulties during(More)
Properties of the organic matrix of bone as well as its function in the microstructure could be the key to the remarkable mechanical properties of bone. Previously, it was found that on the molecular level, calcium-mediated sacrificial bonds increased stiffness and enhanced energy dissipation in bone constituent molecules. Here we present evidence for how(More)
Hox genes encode a set of evolutionarily conserved transcription factors that regulate anteroposterior patterning mechanisms in insects and vertebrates and are expressed along this axis in a range of bilaterians. Here we present the developmental expression of a Scr/Hox5 gene in the gastropod mollusc Haliotis. In Haliotis, embryogenesis yields a non-feeding(More)
The red abalone, Haliotis rufescens, is an especially tractable experimental model for studying molecular and cellular changes that occur at metamorphosis, because synchronous settlement and metamorphosis of the planktonic larvae can be induced in the laboratory. Using reverse transcription-polymerase chain reaction with degenerate primers based on the(More)
Nanoscale structural analyses of biomineralized materials can frequently help elucidate important structure-function relationships in these complex organic-inorganic composites. Atomic force microscope (AFM) imaging of the exterior surface of trabecular bone reveals a densely woven structure of collagen fibrils, banded with a 67-nm periodicity, and densely(More)