Daniel E. Crispell

Learn More
This paper introduces a novel method for surface reconstruction using the depth discontinuity information captured by a multi-flash camera while the object moves along a known trajectory. Experimental results based on turntable sequences are presented. By observing the visual motion of depth discontinuities, surface points are accurately reconstructed -(More)
This paper presents a new system for acquiring complete 3D surface models using a single structured light projector, a pair of planar mirrors, and one or more synchronized cameras. We project structured light patterns that illuminate the object from all sides (not just the side of the projector) and are able to observe the object from several vantage points(More)
This paper presents a new system for rapidly acquiring complete 3-D surface models using a single orthographic structured light projector, a pair of planar mirrors, and one or more synchronized cameras. Using the mirrors, we project structured light patterns that illuminate the object from all sides (not just the side of the projector) and are able to(More)
This paper introduces a novel imaging system composed of an array of spherical mirrors and a single high-resolution digital camera. We describe the mechanical design and construction of a prototype, analyze the geometry of image formation, present a tailored calibration algorithm, and discuss the effect that design decisions had on the calibration routine.(More)
Given a set of high-resolution images of a scene, it is often desirable to predict the scene’s appearance from viewpoints not present in the original data for purposes of change detection. When significant 3-D relief is present, a model of the scene geometry is necessary for accurate prediction to determine surface visibility relationships. In the absence(More)
Visual Sensor Networks (VSNs) represent a qualitative leap in functionality over existing sensornets. With high data rates and precise calibration requirements, VSNs present challenges not faced by today’s sensornets. The power and bandwidth required to transmit video data from hundreds or thousands of cameras to a central location for processing would be(More)
We propose a new primal-dual framework for representation, capture, processing, and display of piecewise smooth surfaces, where the dual space is the space of oriented 3D lines, or rays, as opposed to the traditional dual space of planes. An image capture process detects points on a depth discontinuity sweep from a camera moving with respect to an object,(More)
The performance of modern face recognition systems is a function of the dataset on which they are trained. Most datasets are largely biased toward “near-frontal” views with benign lighting conditions, negatively effecting recognition performance on images that do not meet these criteria. The proposed approach demonstrates how a baseline training set can be(More)