Daniel E. Adkins

Learn More
Neurocognitive deficits are a core feature of schizophrenia and, therefore, represent potentially critical outcome variables for assessing antipsychotic treatment response. We performed genome-wide association studies (GWAS) with 492K single nucleotide polymorphisms (SNPs) in a sample of 738 patients with schizophrenia from the Clinical Antipsychotic Trials(More)
AIM We studied the use of methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) as a cost-effective screening tool for methylome-wide association studies (MWAS). MATERIALS & METHODS Because MBD-seq has not yet been applied on a large scale, we first developed and tested a pipeline for data processing using 1500 schizophrenia cases(More)
QT prolongation is associated with increased risk of cardiac arrhythmias. Identifying the genetic variants that mediate antipsychotic-induced prolongation may help to minimize this risk, which might prevent the removal of efficacious drugs from the market. We performed candidate gene analysis and five drug-specific genome-wide association studies (GWASs)(More)
BACKGROUND Understanding individual differences in the development of extrapyramidal side effects (EPS) as a response to antipsychotic therapy is essential to individualize treatment. METHODS We performed genomewide association studies to search for genetic susceptibility to EPS. Our sample consisted of 738 schizophrenia patients, genotyped for 492K(More)
Understanding individual differences in the susceptibility to metabolic side effects as a response to antipsychotic therapy is essential to optimize the treatment of schizophrenia. Here, we perform genomewide association studies (GWAS) to search for genetic variation affecting the susceptibility to metabolic side effects. The analysis sample consisted of(More)
OBJECTIVE In addition to comparing drug treatment groups, the wealth of genetic and clinical data collected in the Clinical Antipsychotic Trials of Intervention Effectiveness study offers tremendous opportunities to study individual differences in response to treatment with antipsychotics. A major challenge, however, is how to estimate the individual(More)
Pharmacogenomics is yet to fulfill its promise of manifestly altering clinical medicine. As one example, a predictive test for tardive dyskinesia (TD) (an adverse drug reaction consequent to antipsychotic exposure) could greatly improve the clinical treatment of schizophrenia but human studies are equivocal. A complementary approach is the mouse-then-human(More)
Over 800,000 Americans abuse the psychomotor stimulant, methamphetamine, yet its abuse is without an approved medication. Methamphetamine induces hypermotor activity, and sensitization to this effect is suggested to represent aspects of the addiction process. Methamphetamine's regulation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels may be partially(More)
Schizophrenia is an often devastating neuropsychiatric illness. Understanding the genetic variation affecting response to antipsychotics is important to develop novel diagnostic tests to match individual schizophrenia patients to the most effective and safe medication. In this study, we use a genome-wide approach to detect genetic variation underlying(More)