Learn More
BACKGROUND Naturally induced antibodies binding to surface antigens of Plasmodium falciparum-infected erythrocytes can be detected by direct agglutination of infected erythrocytes or by indirect immunofluorescence on intact, unfixed, infected erythrocytes. Agglutinating antibodies have previously been shown to recognise Plasmodium falciparum erythrocyte(More)
This longitudinal prospective study shows that antibodies to the N-terminal block 2 region of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) are associated with protection against clinical malaria in an area of stable but seasonal malaria transmission of Ghana. Antibodies to the block 2 region of MSP-1 were measured in a cohort of 280(More)
The development of effective malaria vaccines depends on the identification of targets of well-defined protective immune responses. Data and samples from a longitudinal study of a cohort of children from coastal Ghana were used to investigate the role of antibody responses to 3 regions of the Plasmodium falciparum glutamate-rich protein (GLURP). The data(More)
The relationship between malaria-related outcomes and cytokine production in whole blood cultures associated with cellular immune responses and immunity to Plasmodium falciparum malaria was examined in a study in southern Ghana. Production of malaria-specific interferon (IFN)-gamma was associated with reduced risk of fever and clinical malaria. Protective(More)
In areas of endemic parasite transmission, protective immunity to Plasmodium falciparum malaria is acquired over several years with numerous disease episodes. Acquisition of Abs to parasite-encoded variant surface Ags (VSA) on the infected erythrocyte membrane is important in the development of immunity, as disease-causing parasites appear to be those not(More)
In areas of unstable transmission malaria affects all age groups, but the malaria incidence is lower in adults compared to children and teenagers. Under such conditions subclinical Plasmodium falciparum infections are common and some infections are controlled, because blood parasitaemia is maintained at low densities. Here, we test the hypothesis that the(More)
BACKGROUND Antigen-specific antibody-mediated immune responses play an important role in natural protection against clinical malaria, but conflicting estimates of this association have emerged from immuno-epidemiological studies in different geographical settings. This study was aimed at assessing in a standardized manner the relationship between the(More)
BACKGROUND Severe anaemia (SA), intravascular haemolysis (IVH) and respiratory distress (RD) are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. (More)
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of infected erythrocytes. Each parasite genome contains about 40 PfEMP1 genes, but only 1 PfEMP1 gene is expressed at a given time. PfEMP1 serves as a parasite-sequestering ligand to endothelial cells and enables the parasites to avoid splenic(More)
There is longstanding evidence that immunoglobulin G (IgG) has a role in protection against clinical malaria, and human antibodies of the cytophilic subclasses are thought to be particularly critical in this respect. In this cohort study, 286 Burkinabè children 6 months to 15 years old were kept under malaria surveillance in order to assess the protective(More)