Learn More
We present an anisotropic mesh denoising algorithm that is effective, simple and fast. This is accomplished by filtering vertices of the mesh in the normal direction using local neighborhoods. Motivated by the impressive results of bilateral filtering for image denoising, we adopt it to denoise 3D meshes; addressing the specific issues required in the(More)
—We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). The computation of points on the surface is local, which results(More)
Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We provide such a representation of a surface, based on the(More)
Video retargeting is the process of transforming an existing video to fit the dimensions of an arbitrary display. A compelling retargeting aims at preserving the viewers' experience by maintaining the information content of important regions in the frame, whilst keeping their aspect ratio. An efficient algorithm for video retargeting is introduced. It(More)
Mesh partitioning and skeletonisation are fundamental for many computer graphics and animation techniques. Because of the close link between an object’s skeleton and its boundary, these two problems are in many cases complementary. Any partitioning of the object can assist in the creation of a skeleton and any segmentation of the skeleton can infer a(More)
We present a novel method for synthesizing solid textures from 2D texture exemplars. First, we extend 2D texture optimization techniques to synthesize 3D texture solids. Next, the non-parametric texture optimization approach is integrated with histogram matching, which forces the global statistics of the synthesized solid to match those of the exemplar.(More)
We consolidate an unorganized point cloud with noise, outliers, non-uniformities, and in particular interference between close-by surface sheets as a preprocess to surface generation, focusing on reliable normal estimation. Our algorithm includes two new developments. First, a <i>weighted locally optimal projection</i> operator produces a set of denoised,(More)
Seamless cloning of a source image patch into a target image is an important and useful image editing operation, which has received considerable research attention in recent years. This operation is typically carried out by solving a Poisson equation with Dirichlet boundary conditions, which smoothly interpolates the discrepancies between the boundary of(More)
We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We present tools to increase or decrease the density of the(More)
We present a new method for completing missing parts caused by the removal of foreground or background elements from an image. Our goal is to synthesize a complete, visually plausible and coherent image. The visible parts of the image serve as a training set to infer the unknown parts. Our method iteratively approximates the unknown regions and composites(More)