Learn More
Neuronal nitric oxide synthase (nNOS) is concentrated at synaptic junctions in brain and motor endplates in skeletal muscle. Here, we show that the N-terminus of nNOS, which contains a PDZ protein motif, interacts with similar motifs in postsynaptic density-95 protein (PSD-95) and a related novel protein, PSD-93.nNOS and PSD-95 are coexpressed in numerous(More)
Soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins of the vesicle-associated membrane protein (VAMP) and syntaxin families play a central role in vesicular trafficking through the formation of complexes between proteins present on vesicle and target membranes. Formation of these complexes is proposed to mediate aspects of(More)
The proposed cis-Golgi vesicle receptor syntaxin 5 was found in a complex with Golgi-associated SNARE of 28 kDa (GOS-28), rbet1, rsly1, and two novel proteins characterized herein: rat sec22b and membrin, both cytoplasmically oriented integral membrane proteins. The complex appears to recapitulate vesicle docking interactions of proteins originating from(More)
Nitric oxide (NO) is synthesized in skeletal muscle by neuronal-type NO synthase (nNOS), which is localized to sarcolemma of fast-twitch fibers. Synthesis of NO in active muscle opposes contractile force. We show that nNOS partitions with skeletal muscle membranes owing to association of nNOS with dystrophin, the protein mutated in Duchenne muscular(More)
The ER/Golgi soluble NSF attachment protein receptor (SNARE) membrin, rsec22b, and rbet1 are enriched in approximately 1-micrometer cytoplasmic structures that lie very close to the ER. These appear to be ER exit sites since secretory cargo concentrates in and exits from these structures. rsec22b and rbet1 fused to fluorescent proteins are enriched at(More)
We present FLEXWIN, an open source algorithm for the automated selection of time windows on pairs of observed and synthetic seismograms. The algorithm was designed specifically to accommodate synthetic seismograms produced from 3-D wavefield simulations, which capture complex phases that do not necessarily exist in 1-D simulations or traditional traveltime(More)
  • 1