Learn More
Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell(More)
Bacteria are thought to cope with fluctuating environmental solute concentrations primarily by adjusting the osmolality of their cytoplasm. To obtain insights into the underlying metabolic adaptations, we analyzed the global metabolic response of Escherichia coli to sustained hyperosmotic stress using nontargeted mass spectrometry. We observed that 52% of(More)
Old age is associated with a progressive decline of mitochondrial function and changes in nuclear chromatin. However, little is known about how metabolic activity and epigenetic modifications change as organisms reach their midlife. Here, we assessed how cellular metabolism and protein acetylation change during early aging in Drosophila melanogaster.(More)
Metabolomics is increasingly employed to investigate metabolism and its reciprocal crosstalk with cellular signaling and regulation. In recent years, several nontargeted metabolomics methods providing substantial metabolome coverage have been developed. Here, we review and compare the contributions of traditional targeted and nontargeted metabolomics in(More)
Previously we have shown that nitrate reductase (NR) activity was impaired in Arabidopsis seedlings and rosette stage leaves when the basic leucine zipper transcription factors HY5 and HYH were absent. In the present work, we investigated the influence of hy5 and hyh null mutations on the expression of the NR encoding genes NIA1 and NIA2, as well as genes(More)
Metabolism is one of the best-understood cellular processes whose network topology of enzymatic reactions is determined by an organism's genome. The influence of genes on metabolite levels, however, remains largely unknown, particularly for the many genes encoding non-enzymatic proteins. Serendipitously, genomewide association studies explore the(More)
Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear(More)
'Omics' techniques are widely used to identify novel mechanisms underlying brain function and pathology. Here we applied a novel metabolomics approach to further ascertain the role of frontostriatal brain regions for the expression of addiction-like behaviors in rat models of alcoholism. Rats were made alcohol dependent via chronic intermittent alcohol(More)
Our understanding of metabolism is limited by a lack of knowledge about the functions of many enzymes. Here, we develop a high-throughput mass spectrometry approach to comprehensively profile proteins for in vitro enzymatic activity. Overexpressed or purified proteins are incubated in a supplemented metabolome extract containing hundreds of biologically(More)
Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for biosynthesis and/or transport of riboflavin (rib genes). Cytoplasmic riboflavin is rapidly and almost completely converted to FMN by flavokinases. When cytoplasmic levels of FMN are sufficient ("high levels"), FMN binding to FMN riboswitches(More)