Learn More
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data(More)
Community assembly involves two antagonistic processes that select functional traits in opposite directions. Environmental filtering tends to increase the functional similarity of species within communities leading to trait convergence, whereas competition tends to limit the functional similarity of species within communities leading to trait divergence.(More)
Phenotypic traits influence species distributions, but ecology lacks established links between multidimensional phenotypes and fitness for predicting species responses to environmental change. The common focus on single traits rather than multiple trait combinations limits our understanding of their adaptive value, and intraspecific trait covariation has(More)
Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000(More)
Most environments harbor large numbers of microbial taxa with ecologies that remain poorly described and characterizing the functional capabilities of whole communities remains a key challenge in microbial ecology. Shotgun metagenomic analyses are increasingly recognized as a powerful tool to understand community-level attributes. However, much of this data(More)
A strategy to increase soil C under pasture-based systems is to increase the root mass inputs or increase rooting depth of plants. Our objective in this study was to measure the seasonal dynamics of root mass and C inputs under two different pasture types (ryegrass-clover vs moderately diverse) that differ in plant diversity and which are commonly used in(More)
The promise of “trait-based” plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We(More)
Increasing the input and turnover of root tissue is considered to be one method that may increase carbon (C) inputs and storage in soil. The use of herbicide during pasture renewal (periodic re-sowing of pasture) is expected to increase root inputs and turnover as plants die. The objective of this study was to quantify the short-term impact of pasture(More)
Plant traits covary with soil fertility, but determining whether this is the outcome of environmental filtering or plant feedback is not straightforward, especially in long-lived plant communities such as rain forests. Without explicitly accounting for the potential of plant litter to influence soil properties, it is difficult to interpret with confidence(More)
  • 1