Daniel C. Gray

Learn More
Sexual dimorphisms in the brain underlie behavioral sex differences, but the function of individual sexually dimorphic neuronal populations is poorly understood. Neuronal sexual dimorphisms typically represent quantitative differences in cell number, gene expression, or other features, and it is unknown whether these dimorphisms control sex-typical behavior(More)
Although Akt is known as a survival kinase, inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway do not always induce substantial apoptosis. We show that silencing Akt1 alone, or any combination of Akt isoforms, can suppress the growth of tumors established from phosphatase and tensin homologue-null human cancer cells. Although these findings(More)
To identify genes that could serve as targets for novel cancer therapeutics, we used a bioinformatic analysis of microarray data comparing gene expression between normal and tumor-derived primary human tissues. From this approach, we have found that maternal embryonic leucine zipper kinase (Melk), a member of the AMP serine/threonine kinase family, exhibits(More)
The kinase Akt plays a central role as a regulator of multiple growth factor input signals, thus making it an attractive anticancer drug target. A-443654 is an ATP-competitive Akt inhibitor. Unexpectedly, treatment of cells with A-443654 causes paradoxical hyperphosphorylation of Akt at its two regulatory sites (Thr308 and Ser473). We explored whether(More)
Apoptosis is a conserved cellular pathway that results in the activation of cysteine-aspartyl proteases, or caspases. To dissect the nonredundant roles of the executioner caspase-3, -6, and -7 in orchestrating apoptosis, we have developed an orthogonal protease to selectively activate each isoform in human cells. Our approach uses a split-tobacco etch virus(More)
Virtually all of the 560 human proteases are stored as inactive proenyzmes and are strictly regulated. We report the identification and characterization of the first small molecules that directly activate proenzymes, the apoptotic procaspases-3 and -6. It is surprising that these compounds induce autoproteolytic activation by stabilizing a conformation that(More)
The usual paradigm for developing kinase inhibitors in oncology is to use a high-affinity proof-of-concept inhibitor with acceptable metabolic properties for key target validation experiments. This approach requires substantial medicinal chemistry and can be confounded by drug toxicity and off-target activities of the test molecule. As a better alternative,(More)
BACKGROUND Conditional expression vectors have become a valuable research tool to avoid artefacts that may result from traditional gene expression studies. However, most systems require multiple plasmids that must be independently engineered into the target system, resulting in experimental delay and an increased potential for selection of a cell(More)
Patients suffer from complications as a result of unintentional nerve damage during surgery. We focus on improving intraoperative visualization of nerves through the use of a targeted fluorophore and optical imaging instrumentation. A myelin-targeting fluorophore, GE3111, was synthesized, characterized for its optical and myelin-binding properties using(More)
Several forms of cancer are characterized by frequent activating mutations in the serine/threonine kinase, BRAF. Substitution of glutamic acid for valine at codon 600 (V600E) accounts for approximately 90% of all BRAF activating mutations and leads to stimulation of kinase activity, downstream signaling, and cell transformation. To better understand the(More)