Daniel C. Alexander

Learn More
This paper introduces neurite orientation dispersion and density imaging (NODDI), a practical diffusion MRI technique for estimating the microstructural complexity of dendrites and axons in vivo on clinical MRI scanners. Such indices of neurites relate more directly to and provide more specific markers of brain tissue microstructure than standard indices(More)
We address the problem of applying spatial transformations (or "image warps") to diffusion tensor magnetic resonance images. The orientational information that these images contain must be handled appropriately when they are transformed spatially during image registration. We present solutions for global transformations of three-dimensional images up to(More)
Recent electrophysiological investigations of the auditory system in primates along with functional neuroimaging studies of auditory perception in humans have suggested there are two pathways arising from the primary auditory cortex. In the primate brain, a 'ventral' pathway is thought to project anteriorly from the primary auditory cortex to prefrontal(More)
In this paper, we present a novel deformable registration algorithm for diffusion tensor MR images that enables explicit optimization of tensor reorientation. The optimization seeks a piecewise affine transformation that divides the image domain into uniform regions and transform each region affinely. The objective function captures both the image(More)
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo.(More)
This paper proposes and tests a technique for imaging orientationally invariant indices of axon diameter and density in white matter using diffusion magnetic resonance imaging. Such indices potentially provide more specific markers of white matter microstructure than standard indices from diffusion tensor imaging. Orientational invariance allows for(More)
This chapter reviews multiple-fiber reconstruction algorithms for diffusion magnetic resonance imaging (MRI) and provides some initial comparative results for two such algorithms, q-ball imaging and PASMRI, on data from a typical clinical diffusion MRI acquisition. The chapter highlights the problems with standard approaches, such as diffusion-tensor MRI,(More)
Functional lateralization is a feature of human brain function, most apparent in the typical left-hemisphere specialization for language. A number of anatomical and imaging studies have examined whether structural asymmetries underlie this functional lateralization. We combined functional MRI (fMRI) and diffusion-weighted imaging (DWI) with tractography to(More)
We determine a statistic called the (radially) persistent angular structure (PAS) from samples of the Fourier transform of a three-dimensional function. The method has applications in diffusion magnetic resonance imaging (MRI), which samples the Fourier transform of the probability density function of particle displacements. The PAS is then a representation(More)