Learn More
Two aspartic proteinases, plasmepsins I and II, are present in the digestive vacuole of the human malarial parasite Plasmodium falciparum and are believed to be essential for parasite degradation of haemoglobin. Here we report the expression and kinetic characterisation of functional recombinant plasmepsin I. In order to generate active plasmepsin I from(More)
The Arabidopsis thaliana constitutive disease resistance 1 (CDR1) gene product is an aspartic proteinase that has been implicated in disease resistance signaling (Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A., and Lamb, C. (2004) EMBO J. 23, 980-988). This apoplastic enzyme is a member of the group of "atypical" plant(More)
Mutant presenilins (PS) contribute to the pathogenesis of familial Alzheimer's disease (FAD) by enhancing the production of Abeta42 from beta-amyloid precursor protein. Presenilins are endoproteolytically processed to N-terminal and C-terminal fragments, which together form a stable 1:1 complex. We have mapped the cleavage site in the PS2 protein by direct(More)
Random screening provided no suitable lead structures in a search for novel inhibitors of the bacterial enzyme DNA gyrase. Therefore, an alternative approach had to be developed. Relying on the detailed 3D structural information of the targeted ATP binding site, our approach combines as key techniques (1) an in silico screening for potential low molecular(More)
The malaria parasite Plasmodium falciparum degrades host cell hemoglobin inside an acidic food vacuole during the blood stage of the infectious cycle. A number of aspartic proteinases called plasmepsins (PMs) have been identified to play important roles in this degradation process and therefore generated significant interest as new antimalarial targets.(More)
Endothelin-converting enzyme 1 (ECE-1, EC is a zinc-dependent type II mammalian membrane protein comprising the active site in the ectodomain. It exists in multiple splice variants that all catalyze the last and rate-limiting step in the activation of preproendothelin to the highly potent vasoconstrictor endothelin. There is high interest in(More)
Since its discovery in 1988 by Yanagisawa et al., endothelin (ET), a potent vasoconstrictor, has been widely implicated in the pathophysiology of cardiovascular, cerebrovascular, and renal diseases. Many research groups have embarked on the discovery and development of ET receptor antagonists for the treatment of such diseases. While several compounds,(More)
Sphingosine-1-phosphate (S1P) is a widespread lysophospholipid which displays a wealth of biological effects. Extracellular S1P conveys its activity through five specific G-protein coupled receptors numbered S1P(1) through S1P(5). Agonists of the S1P(1) receptor block the egress of T-lymphocytes from thymus and lymphoid organs and hold promise for the oral(More)
The yeast IA3 polypeptide consists of only 68 residues, and the free inhibitor has little intrinsic secondary structure. IA3 showed subnanomolar potency toward its target, proteinase A from Saccharomyces cerevisiae, and did not inhibit any of a large number of aspartic proteinases with similar sequences/structures from a wide variety of other species.(More)
Here we report the identification of phospholipase Dalpha as a cardosin A-binding protein. The interaction was confirmed by coimmunoprecipitation studies and pull-down assays. To investigate the structural and molecular determinants involved in the interaction, pull-down assays with cardosin A and various glutathione S-transferase-fused phospholipase Dalpha(More)