Daniel Barbosa

Learn More
This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural(More)
We have recently introduced a novel framework to efficiently deal with 3D segmentation of challenging inhomogeneous data in real-time. However, the existing framework still relied on manual initialization, which prevented taking full advantage of the computational speed of the method. In the present manuscript we propose an automatic initialization scheme(More)
A novel automatic 3D+time left ventricle (LV) segmentation framework is proposed for cardiac magnetic resonance (CMR) datasets. The proposed framework consists of three conceptual blocks to delineate both endo and epicardial contours throughout the cardiac cycle: (1) an automatic 2D mid-ventricular initialization and segmentation; (2) an automatic stack(More)
A new formulation of active contours based on explicit functions has been recently suggested. This novel framework allows real-time 3-D segmentation since it reduces the dimensionality of the segmentation problem. In this paper, we propose a B-spline formulation of this approach, which further improves the computational efficiency of the algorithm. We also(More)
Reference values and error metrics Both end-diastolic and end-systolic frames were manually contoured by 3 experts, who have further edited their contours until consensus among the three manually edited LV surfaces was achieved. The global morphological and functional parameters were estimated from the mean surfaces from the 3 experts contours, as well as(More)
Automatic quantification of regional left ventricular deformation in volumetric ultrasound data remains challenging. Many methods have been proposed to extract myocardial motion, including techniques using block matching, phase-based correlation, differential optical flow methods, and image registration. Our lab previously presented an approach based on(More)
AIMS Speckle tracking echocardiography has already demonstrated its clinical potential. However, its use in routine practice is jeopardized by recent reports on high inter-vendor variability of the measurements. As such, the European Association of CardioVascular Imaging (EACVI) and the American Society of Echocardiography (ASE) set up a standardization(More)
A novel framework to efficiently deal with three-dimensional (3-D) segmentation of challenging inhomogeneous data in real-time has been recently introduced by the authors. However, the existing framework still relied on manual initialization, which prevented taking full advantage of the computational speed of the method. In the present article, an automatic(More)
The segmentation of the myocardium in echocardiographic images is an important task for the diagnosis of heart disease. This task is difficult due to the inherent problems of echographic images (i.e. low contrast, speckle noise, signal dropout, presence of shadows). In this article, we propose a method to segment the whole myocardium (endocardial and(More)