Learn More
The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were(More)
1 SUMMARY Mobile manipulators operating in field environments will be required to apply large forces, or manipulate large loads, and to perform such tasks on uneven terrain which may cause the system to approach, or reach, a dangerous tipover instability. To avoid tipover in an automatic system, or to provide a human operator with an indication of proximity(More)
The gene products of the rbsRACBD (rbs) operon of C. glutamicum (cg1410-cg1414) encode a ribose-specific ATP-binding cassette (ABC) transport system and its corresponding regulatory protein (RbsR). Deletion of the structural genes rbsACBD prohibited ribose uptake. Deletion of the regulatory gene rbsR resulted in an increased mRNA level of the whole operon.(More)
In a recent proteomics study we have shown that the mcbR gene of Corynebacterium glutamicum ATCC 13032 most probably encodes a transcriptional repressor of the TetR type, which regulates the expression of at least six genes involved in the synthesis of sulphur-containing amino acids. By means of DNA microarray hybridizations we detected 86 genes with(More)
Mobile manipulators operating in eld environments will be required to perform tasks on uneven terrain which may cause the system to approach, or achieve, a dangerous tipover instability. To avoid tipover in an automatic system, or to provide a human operator with an indication of proximity to tipover, it is necessary to dene a measure of stability margin.(More)
In order to isolate transcriptional regulatory proteins involved in L-methionine-dependent repression in Corynebacterium glutamicum, proteins binding to the putative promoter region upstream of the metY gene were isolated by DNA affinity chromatography. One of the isolated proteins was identified as a putative transcriptional repressor of the TetR-family by(More)
BACKGROUND Corynebacterium glutamicum is a high-GC Gram-positive soil bacterium of great biotechnological importance for the production of amino acids. To facilitate the rational design of sulphur amino acid-producing strains, the pathway for assimilatory sulphate reduction providing the necessary reduced sulfur moieties has to be known. Although this(More)
Corynebacterium glutamicum ATCC 13032 was found to be able to utilize a broad range of sulfonates and sulfonate esters as sulfur sources. The two gene clusters potentially involved in sulfonate utilization, ssuD1CBA and ssuI-seuABC-ssuD2, were identified in the genome of C. glutamicum ATCC 13032 by similarity searches. While the ssu genes encode proteins(More)
It was found that nucleoside 5'-diphosphates could serve as effectors of ribonucleotide reductase. ADP was an activator of CDP reduction; ADP reduction was activated by dGDP; GDP reduction was activated by dTDP. Conversely, dADP inhibited the reduction of CDP, UDP, GDP, and ADP; dGDP inhibited UDP and GDP reductions; and dTDP inhibited UDP reduction. The(More)
Experiments were carried out in L1210 cells to examine the importance of 'substrate cycles' in regulating the intracellular levels of deoxyribonucleoside 5'-triphosphate. L1210 cells were incubated with [14C]cytidine or [14C]adenosine in the presence and absence of hydroxyurea or cytosine arabinoside (araC). These incubations were carried out for either 30(More)