Daniel A. Haber

Learn More
BACKGROUND Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown. METHODS We(More)
The establishment of DNA methylation patterns requires de novo methylation that occurs predominantly during early development and gametogenesis in mice. Here we demonstrate that two recently identified DNA methyltransferases, Dnmt3a and Dnmt3b, are essential for de novo methylation and for mouse development. Inactivation of both genes by gene targeting(More)
BACKGROUND Oncogenic fusion genes consisting of EML4 and anaplastic lymphoma kinase (ALK) are present in a subgroup of non-small-cell lung cancers, representing 2 to 7% of such tumors. We explored the therapeutic efficacy of inhibiting ALK in such tumors in an early-phase clinical trial of crizotinib (PF-02341066), an orally available small-molecule(More)
The development and clinical application of inhibitors that target the epidermal growth factor receptor (EGFR) provide important insights for new lung cancer therapies, as well as for the broader field of targeted cancer therapies. We review the results of genetic, biochemical and clinical studies focused on somatic mutations of EGFR that are associated(More)
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the(More)
Epithelial-mesenchymal transition (EMT) of adherent epithelial cells to a migratory mesenchymal state has been implicated in tumor metastasis in preclinical models. To investigate its role in human cancer, we characterized EMT in circulating tumor cells (CTCs) from breast cancer patients. Rare primary tumor cells simultaneously expressed mesenchymal and(More)
The number of cells in an organism is determined by regulating both cell proliferation and cell death. Relatively few mechanisms have been identified that can modulate both of these processes. In a screen for Drosophila mutations that result in tissue overgrowth, we identified salvador (sav), a gene that promotes both cell cycle exit and cell death.(More)
Viable tumour-derived epithelial cells (circulating tumour cells or CTCs) have been identified in peripheral blood from cancer patients and are probably the origin of intractable metastatic disease. Although extremely rare, CTCs represent a potential alternative to invasive biopsies as a source of tumour tissue for the detection, characterization and(More)
BRCA1 interacts in vivo with a novel protein, BACH1, a member of the DEAH helicase family. BACH1 binds directly to the BRCT repeats of BRCA1. A BACH1 derivative, bearing a mutation in a residue that was essential for catalytic function in other helicases, interfered with normal double-strand break repair in a manner that was dependent on its BRCA1 binding(More)
Xiao-Jun Ma,1 Zuncai Wang,2 Paula D. Ryan,3 Steven J. Isakoff,4,5 Anne Barmettler,2 Andrew Fuller,2 Beth Muir,2 Gayatry Mohapatra,2 Ranelle Salunga,1 J. Todd Tuggle,1 Yen Tran,1 Diem Tran,1 Ana Tassin,1 Paul Amon,1 Wilson Wang,1 Wei Wang,1 Edward Enright,1 Kimberly Stecker,1 Eden Estepa-Sabal,1 Barbara Smith,3 Jerry Younger,3 Ulysses Balis,2 James(More)