Daniel A. Colón-Ramos

Learn More
Neural circuits are assembled through the coordinated innervation of pre- and postsynaptic partners. We show that connectivity between two interneurons, AIY and RIA, in Caenorhabditis elegans is orchestrated by a pair of glial cells that express UNC-6 (netrin). In the postsynaptic neuron RIA, the netrin receptor UNC-40 (DCC, deleted in colorectal cancer)(More)
Brain circuits endow behavioral flexibility. Here, we study circuits encoding flexible chemotaxis in C. elegans, where the animal navigates up or down NaCl gradients (positive or negative chemotaxis) to reach the salt concentration of previous growth (the set point). The ASER sensory neuron mediates positive and negative chemotaxis by regulating the(More)
Optimal four-dimensional imaging requires high spatial resolution in all dimensions, high speed and minimal photobleaching and damage. We developed a dual-view, plane illumination microscope with improved spatiotemporal resolution by switching illumination and detection between two perpendicular objectives in an alternating duty cycle. Computationally(More)
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a conserved signal transduction cascade that is fundamental for the correct development of the nervous system. The major negative regulator of PI3K signaling is the lipid phosphatase DAF-18/PTEN, which can modulate PI3K pathway activity during neurodevelopment. Here, we identify a novel role for(More)
Many animals use their olfactory systems to learn to avoid dangers, but how neural circuits encode naive and learned olfactory preferences, and switch between those preferences, is poorly understood. Here, we map an olfactory network, from sensory input to motor output, which regulates the learned olfactory aversion of Caenorhabditis elegans for the smell(More)
The chemotrophic factor Netrin can simultaneously instruct different neurodevelopmental programs in individual neurons in vivo. How neurons correctly interpret the Netrin signal and undergo the appropriate neurodevelopmental response is not understood. Here we identify MIG-10 isoforms as critical determinants of individual cellular responses to Netrin. We(More)
Netrin is a chemotrophic factor known to regulate a number of neurodevelopmental processes, including cell migration, axon guidance, and synaptogenesis. Although the role of Netrin in synaptogenesis is conserved throughout evolution, the mechanisms by which it instructs synapse assembly are not understood. Here we identify a mechanism by which the Netrin(More)
Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting(More)
Synaptic contacts are largely established during embryogenesis and are then maintained during growth. To identify molecules involved in this process, we conducted a forward genetic screen in C. elegans and identified cima-1. In cima-1 mutants, synaptic contacts are correctly established during embryogenesis, but ectopic synapses emerge during(More)
The Caenorhabditis elegans embryo is a powerful model for studying neural development, but conventional imaging methods are either too slow or phototoxic to take full advantage of this system. To solve these problems, we developed an inverted selective plane illumination microscopy (iSPIM) module for noninvasive high-speed volumetric imaging of living(More)