Learn More
Until recently, neurons in the healthy brain were considered immune-privileged because they did not appear to express MHC class I (MHCI). However, MHCI mRNA was found to be regulated by neural activity in the developing visual system and has been detected in other regions of the uninjured brain. Here we show that MHCI regulates aspects of synaptic function(More)
In the developing mammalian retina, spontaneous waves of action potentials are present in the ganglion cell layer weeks before vision. These waves are known to be generated by a synaptically connected network of amacrine cells and retinal ganglion cells, and exhibit complex spatiotemporal patterns, characterized by shifting domains of coactivation. Here, we(More)
Tuning curves are widely used to characterize the responses of sensory neurons to external stimuli, but there is an ongoing debate as to their role in sensory processing. Commonly, it is assumed that a neuron's role is to encode the stimulus at the tuning curve peak, because high firing rates are the neuron's most distinct responses. In contrast, many(More)
The timing of action potentials relative to sensory stimuli can be precise down to milliseconds in the visual system, even though the relevant timescales of natural vision are much slower. The existence of such precision contributes to a fundamental debate over the basis of the neural code and, specifically, what timescales are important for neural(More)
Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning(More)
In this study, we characterize the adaptation of neurons in the cat lateral geniculate nucleus to changes in stimulus contrast and correlations. By comparing responses to high- and low-contrast natural scene movie and white noise stimuli, we show that an increase in contrast or correlations results in receptive fields with faster temporal dynamics and(More)
Complex neural circuits in the mammalian brain develop through a combination of genetic instruction and activity-dependent refinement. The relative role of these factors and the form of neuronal activity responsible for circuit development is a matter of significant debate. In the mammalian visual system, retinal ganglion cell projections to the brain are(More)
Neural activity is often required for the final stages of synaptic refinement during brain development. It is thought that learning rules acting at the individual synapse level, which specify how pre- and postsynaptic activity lead to changes in synaptic efficacy, underlie such activity-dependent development. How such rules might function in vivo can be(More)
In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical(More)